Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar Energy to cool the house

17.06.2004


Fagor is working in three lines of research of solar energy, one of which involves a system for cooling household temperatures. Trials are being carried out in the experimental house installed in the Miñano Technological Park.




Perhaps it is the photoelectric energy that is the best known of the three. For years the production photoelectric energy has had the sole aim of on-site consumption for personal use, and thus were often installed in places lacking power supply lines. However, in the last few years, a new possibility has arisen: selling the electric power production to the electricity utility companies. These are under the obligation to buy all the photoelectric energy offered to them and, moreover, have to pay for it at almost three times greater than the sale price of conventional energy.

A photoelectric panel is made up of several photoelectric cells. The cells are usually of single crystal silicon, given that this is a material that has a greater production yield. This silicon is semiconducting and, when sunshine falls on it, it frees electrons. These electrons are conducted through wires in a circuit, creating the electric current. It is direct current, thus needing a transformer to convert it to AC. Subsequently this AC can be used, for example, in locations lacking electricity supply or it may be sold to energy supply companies.


Another way of making use of solar energy is the se of thermal panels. At first sight, they look like photoelectric panels, but they are, in fact, different.

A panel is known as a collector and has a glass cover to increase the temperature of the interior of the box. Under the glass there is a black layer for better absorption of solar radiation and below this layer is the tubing with water inside it to be heated.

The habitual uses for hot water are in health care and in heating. If the tubing contains only water, it can be used directly or it can be accumulated, i.e. the installation is an open circuit. If the circuit is a closed one, the tubing has a liquid which heats up more readily than water and it is this liquid, by means of a heat interchanger, that transmits the heat to the water to be used.

But the heat absorbed in a thermal solar installation can be used for refrigeration. There already exist installations for large sites, but Fagor is working on a pioneering system for domestic installations.

The panels are the same as the previous ones, i.e. thermal panels but containing a solution of lithium bromide. This warms up and, by means of a number of thermodynamic processes in the absorption machine, at the same time cools the water and thus, the house. Within the absorption machine processes of sublimation, condensation and calorific interchange take place. If there is not sufficient sun, support boilers and accumulators are used.

Fagor has been working for 10 years on this project. Until now, only prototypes have been developed, but now they have started with trials outside the laboratory. These are resistance tests and measurements of real yields. This years it is hoped 40 test units are to be built and it is hoped that within a year approximately, the first absorption units can be marketed.

Contact :
Eneko Imaz
Elhuyar Fundazioa
garazi@elhuyar.com
(+34) 943 363040

Eneko Imaz | Basque research
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=515&hizk=I
http://www.fagor.es

More articles from Power and Electrical Engineering:

nachricht New graphene-based metasurface capable of independent amplitude and phase control of light
20.02.2020 | The Korea Advanced Institute of Science and Technology (KAIST)

nachricht A step towards controlling spin-dependent petahertz electronics by material defects
19.02.2020 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>