Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL researchers focus on the CO2 big picture

23.04.2004


Spring’s lush green lawns and hot pink shoes contribute at least in a small way to the world’s total carbon picture, say researchers at the Department of Energy’s Oak Ridge National Laboratory.



Indeed, the latest fashions on Fifth Avenue and fertilizers that help homeowners achieve that "barefoot" lawn have their associated carbon dioxide costs, and ORNL’s Gregg Marland and Tristram West keep up with them. Their task is to track the total carbon produced worldwide and estimate how much is taken up and cycled through trees, plants, soil and goods produced from these resources. The overall goal is to determine the net impact that people and their activities have on our planet.

"Energy use is embodied in everything that we use and buy," Marland said. "And just because you may not be burning the fossil fuel yourself, don’t kid yourself into thinking that someone isn’t burning it on your behalf."


Each person’s annual share of carbon dioxide emissions in the United States is 5.4 metric tons, or nearly 12,000 pounds. One-third of those emissions is from power generation, another third is from internal combustion-powered vehicles, and the remaining third is from other sources, including fossil fuels used in factories, office buildings, homes and for daily activities like lawn mowing.

Carbon dioxide, considered a greenhouse gas, is increasing in the atmosphere each year and is thought to be a major factor in climate change.

"From producing the latest in shoes to building cars and home improvement products, it all requires electricity and power plants to generate that electricity," Marland said. "So staying in fashion can actually be costly to the environment because people are constantly replacing perfectly good clothing, shoes, furniture and home accessories with the latest styles."

A recent analysis by West shows that nearly 22,000 manufacturers in the textile and apparel industry emitted about 12 million tons of CO2 in 1998. And West noted that this number doesn’t include the energy and emissions associated with the nearly 19 billion square meters of garments imported to the U.S. each year.

Looking at lawns, West noted that there are a number of associated costs to the environment, ranging from mining lime and manufacturing fertilizer to the greenhouse gases emitted from fertilized lawns. And grass that grows faster needs to be mowed more frequently, which further increases CO2 emissions.

Putting this into further perspective, fertilizing one acre of lawn at the recommended rate of 137 pounds per acre results in 405 pounds of carbon dioxide-equivalent emissions from the production, transportation and application of the fertilizer. This includes CO2 and N2O emissions, which are both reported in units of CO2.

These emissions are equivalent to the amount of CO2 released from an average family sedan driven about 440 miles. But residential use of fertilizer accounts for just a fraction of the more than 11 million tons of nitrogen fertilizer used in 2002 in the U.S. The majority of fertilizer is used in agriculture, and West noted that their research focuses primarily on management of agricultural lands.

"A change in agricultural practice can increase carbon sequestration in agricultural soils," West said. "To know the net effect on greenhouse gas emissions to the atmosphere, however, we consider associated changes in CO2 emissions resulting from the consumption of fossil fuels, emissions of other greenhouse gases and effects on land productivity and crop yield."

Marland, West and Bernhard Schlamadinger of the Institute of Energy Research in Austria study these impacts using a model they developed called the Graz/Oak Ridge Carbon Accounting Model. It allows them to evaluate the net flux of greenhouse gases to the atmosphere for various forest management and agricultural alternatives.

ORNL is managed by UT-Battelle for the Department of Energy.

Ron Walli | ORNL
Further information:
http://www.ornl.gov/info/press_releases/get_press_release.cfm?ReleaseNumber=mr20040422-00

More articles from Power and Electrical Engineering:

nachricht Fraunhofer starts development of refrigerant-free, energy-efficient electrocaloric heat pumps
09.12.2019 | Fraunhofer IPM

nachricht A solution for cleaning up PFAS, one of the world's most intractable pollutants
06.12.2019 | Colorado State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>