Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Shocking" Research Points to Ways to Protect Technology

16.03.2004

Toronto’s CN Tower acts as a lightning laboratory, teaching scientists how to protect delicate electronic equipment against high-voltage surges, says a new study.

Lightning data captured by measurement stations at the CN Tower point to the most effective procedures for protecting sensitive technology in tall buildings or on power lines routed through mountainous terrain. "More and more electronic equipment has very sensitive components," says study co-author Wasyl Janischewskyj, a professor emeritus at U of T’s Edward S. Rogers Sr. Department of Electrical and Computer Engineering. "Even a small over-voltage can cause equipment to malfunction."

Lightning strikes the 553-metre-high CN Tower an average of 75 times per year. To direct the current into the ground, metallic conductors run down the tower and are connected to 42 grounding rods buried deep below the surface. Janischewskyj and his colleagues found that the unusual structure of the CN Tower - with its Skypod and observation deck - obstructs the downward flow of electricity and causes the current to peak in certain areas. Identifying such patterns is critical to designing protective measures, he says.

"This study gives us a better understanding of the electromagnetic field caused by a lightning strike to a tall structure," says Janischewskyj. "This can help designers incorporate the appropriate precautions, such as enclosures for sensitive equipment or special diodes that would ’short out’ rather than cause an over-voltage inside the equipment."

The study, which was funded by the Natural Sciences and Engineering Research Council of Canada, appears in the March 3 online edition of the Journal of Electrostatics. CONTACT: Professor Emeritus Wasyl Janischewskyj, Edward S. Rogers Sr. Department of Electrical and Computer Engineering, 416-978-3116, janisch@ecf.utoronto.ca or Nicolle Wahl, U of T public affairs, 416-978-6974, nicolle.wahl@utoronto.ca

Nicolle Wahl | University of Toronto
Further information:
http://www.utoronto.ca

More articles from Power and Electrical Engineering:

nachricht Anode material for safe batteries with a long cycle life
06.08.2020 | Karlsruher Institut für Technologie (KIT)

nachricht ETRI develops eco-friendly color thin-film solar cells
31.07.2020 | National Research Council of Science & Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>