Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Shocking" Research Points to Ways to Protect Technology

16.03.2004

Toronto’s CN Tower acts as a lightning laboratory, teaching scientists how to protect delicate electronic equipment against high-voltage surges, says a new study.

Lightning data captured by measurement stations at the CN Tower point to the most effective procedures for protecting sensitive technology in tall buildings or on power lines routed through mountainous terrain. "More and more electronic equipment has very sensitive components," says study co-author Wasyl Janischewskyj, a professor emeritus at U of T’s Edward S. Rogers Sr. Department of Electrical and Computer Engineering. "Even a small over-voltage can cause equipment to malfunction."

Lightning strikes the 553-metre-high CN Tower an average of 75 times per year. To direct the current into the ground, metallic conductors run down the tower and are connected to 42 grounding rods buried deep below the surface. Janischewskyj and his colleagues found that the unusual structure of the CN Tower - with its Skypod and observation deck - obstructs the downward flow of electricity and causes the current to peak in certain areas. Identifying such patterns is critical to designing protective measures, he says.

"This study gives us a better understanding of the electromagnetic field caused by a lightning strike to a tall structure," says Janischewskyj. "This can help designers incorporate the appropriate precautions, such as enclosures for sensitive equipment or special diodes that would ’short out’ rather than cause an over-voltage inside the equipment."

The study, which was funded by the Natural Sciences and Engineering Research Council of Canada, appears in the March 3 online edition of the Journal of Electrostatics. CONTACT: Professor Emeritus Wasyl Janischewskyj, Edward S. Rogers Sr. Department of Electrical and Computer Engineering, 416-978-3116, janisch@ecf.utoronto.ca or Nicolle Wahl, U of T public affairs, 416-978-6974, nicolle.wahl@utoronto.ca

Nicolle Wahl | University of Toronto
Further information:
http://www.utoronto.ca

More articles from Power and Electrical Engineering:

nachricht Biologically inspired skin improves robots' sensory abilities (Video)
11.10.2019 | Technical University of Munich (TUM)

nachricht New electrolyte stops rapid performance decline of next-generation lithium battery
11.10.2019 | DOE/Argonne National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Liquifying a rocky exoplanet

A hot, molten Earth would be around 5% larger than its solid counterpart. This is the result of a study led by researchers at the University of Bern. The difference between molten and solid rocky planets is important for the search of Earth-like worlds beyond our Solar System and the understanding of Earth itself.

Rocky exoplanets that are around Earth-size are comparatively small, which makes them incredibly difficult to detect and characterise using telescopes. What...

Im Focus: Axion particle spotted in solid-state crystal

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted a famously elusive particle: The axion – first predicted 42 years ago as an elementary particle in extensions of the standard model of particle physics.

The team found signatures of axion particles composed of Weyl-type electrons (Weyl fermions) in the correlated Weyl semimetal (TaSe₄)₂I. At room temperature,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

How to control friction in topological insulators

14.10.2019 | Physics and Astronomy

The shelf life of pyrite

14.10.2019 | Earth Sciences

Shipment tracking for "fat parcels" in the body

14.10.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>