Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Charge doping of molecules one atom at a time

12.03.2004


Using STM, researchers demonstrate precise control needed to build molecular electronics



While the semiconductor industry today routinely dopes bulk silicon with billions of atoms of boron or phosphorous to obtain desired electrical properties, a team of physicists at the University of California, Berkeley, has succeeded in changing the properties of a single molecule by doping it just one atom at a time.

"We can precisely change the exact number of dopant atoms attached to a single molecule, either adding or removing them, which is something no one has been able to do before. We’ve really shown a new level of control of the electronic properties of a molecule," said Michael F. Crommie, UC Berkeley professor of physics and a faculty scientist at Lawrence Berkeley National Laboratory.


This precise control and reversible tuning of individual molecules becomes ever more important as electronic devices shrink in size, to the point where individual molecules become the circuit elements.

"The whole idea of controlling the nature of these little molecular structures is really going to help us understand exactly how they behave and how to control their behavior in an electronic device," Crommie said.

Crommie and his colleagues - UC Berkeley graduate students Ryan Yamachika and Michael Grobis and post-doctoral fellow Andrei Wachowiak - report their success in the March 12 issue of Science.

The physicists used a scanning tunneling microscope (STM) to move a buckyball - a cage-like molecule composed of 60 carbon atoms - around on a surface to pick up one potassium atom at a time, each one slightly altering the electrical properties of the buckyball. They’ve been able to add as many as seven to a single buckyball, which is the nickname for buckminsterfullerene, named after the creator of the geodesic dome, architect Buckminster Fuller.

"We’ve shown you can take a single molecule and add atoms to it that donate charge to the molecule, thereby changing the molecular electronic properties in much the same way that silicon semiconductor properties are changed when you add dopant atoms to it," Crommie said. "We can add one atom to the molecule, or two atoms or three atoms, or we can remove them, so we can change properties in situ while we are looking at it to see how the molecules’ properties behave."

Theoretically, two molecules with different kinds of attached atoms could be placed next to one another to create a P-N junction - the simplest semiconductor circuit that acts as a basic diode. Crommie predicts the technique could be used to attach different kinds of dopant atoms to buckyballs and perhaps other types of molecules as well.

"This is just one of many ideas that people are currently pursuing and will pursue more in the future, and this new work has a bearing on that," he said. "It’s an important step in creating new functionality in a molecular structure."

Crommie said that buckyballs can be thought of as a geodesic sphere of 60 positively charged carbon nuclei with a gas of electrons enveloping them. When a potassium atom gloms onto the buckyball, its electron joins the other electrons swimming around the carbon atoms, filling up the buckyball and altering the properties in a way analogous to the way phosphorus added to silicon alters the electrical properties of silicon.

He and his colleagues were able to exercise such precise control of the buckyball thanks to their homemade, state-of-the-art STM, cooled to 7 degrees above absolute zero (7 Kelvin) in an ultrahigh vacuum and optimized for dragging molecules around a surface. The tip or probe of the STM was used to move the buckyballs over potassium atoms absorbed on a silver surface. The buckyballs immediately snatched up whichever potassium atoms they came into contact with as they were herded around the surface. The potassium atoms could be removed from the buckyballs by dragging them over special regions of the silver surface.

At the moment, the doped buckyballs must remain on the surface - when the buckyballs are picked up, the potassium atoms detach and remain behind.

The STM tip was then used as a probe to "photograph" the surface arrangement and determine the electronic properties of the altered buckyballs.


The work was supported by the U.S. Department of Energy.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu/

More articles from Power and Electrical Engineering:

nachricht IHP technology ready for space flights
20.08.2018 | IHP - Leibniz-Institut für innovative Mikroelektronik

nachricht It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries
20.08.2018 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

20.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>