Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find new way to store hydrogen fuel

07.01.2004


University of Chicago scientists have proposed a new method for storing hydrogen fuel in this week’s online edition of the Proceedings of the National Academy of Sciences.



The lack of practical storage methods has hindered the more widespread use of hydrogen fuels, which are both renewable and environmentally clean. The most popular storage methods-liquid hydrogen and compressed hydrogen-require that the fuel be kept at extremely low temperatures or high pressures. But the University of Chicago’s Wendy Mao and David Mao have formed icy materials made of molecular hydrogen that require less stringent temperature and pressure storage conditions.

"This new class of compounds offers a possible alternative route for technologically useful hydrogen storage," said Russell Hemley, Senior Staff Scientist at the Geophysical Laboratory of the Carnegie Institution of Washington. The findings also could help explain how hydrogen becomes incorporated in growing planetary bodies, he said.


The father-daughter team synthesized compounds made of hydrogen and water, hydrogen and methane, and hydrogen and octane in a diamond-anvil cell, which researchers often use to simulate the high pressures found far beneath Earth’s surface.

The hydrogen-water experiments produced the best results. "The hydrogen-water system has already yielded three compounds so far, with more likely to be found," said Wendy Mao, a graduate student in Geophysical Sciences at the University of Chicago.

The compound that holds the most promise for hydrogen storage, called a hydrogen clathrate hydrate, was synthesized at pressures between 20,000 and 30,000 atmospheres and temperatures of minus 207 degrees Fahrenheit. More importantly, the compound remains stable at atmospheric pressure and a temperature of minus 320 degrees Fahrenheit, the temperature at which liquid nitrogen boils.

"We thought that would be economically very feasible. Liquid nitrogen is easy and cheap to make," Wendy Mao said.

The hydrogen in a clathrate can be released when heated to 207 degrees Fahrenheit. The clathrate’s environmentally friendly byproduct: water.

David Mao noted that while petroleum-based fuels will eventually run out, the supply of hydrogen is limitless. "Hydrogen is the most abundant element in the universe," said David Mao, a Visiting Scientist in Geophysical Sciences at the University of Chicago. If the new method of storing hydrogen fuel works as expected, "that’s going to change everyone’s life in a big way," he said.

The Maos have applied for a patent on their hydrogen clathrate synthesis technique, but one problem still remains: how to make the clathrates in quantities sufficient to power a car. "We’ve only made them in very small amounts in diamond-anvil cells," Wendy Mao said. The Carnegie Institution’s Hemley noted that the clathrates can be produced in gas pressure devices as well as diamond-anvil cells.

In the realm of planetary science, the study helps explain how some of Jupiter’s moons could have incorporated hydrogen during their formation. Scientists once thought that the moons were incapable of retaining hydrogen during their formation. Now it appears that Callisto, Ganymede and especially Europa contain large quantities of water ice, which would require the presence of hydrogen. The hydrogen clathrates that the Maos synthesized in the laboratory could have formed naturally under the temperature and pressure conditions expected to prevail inside these Jovian moons, Wendy Mao said.

Steve Koppes | EurekAlert!
Further information:
http://www-news.uchicago.edu/

More articles from Power and Electrical Engineering:

nachricht Scientists create biodegradable, paper-based biobatteries
08.08.2018 | Binghamton University

nachricht Ricocheting radio waves monitor the tiniest movements in a room
07.08.2018 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>