Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solving the problems of electric motors run from power converters

09.12.2003


In this PhD thesis, Eugenio Gubía proposed a solution for the problems of electric motors run from power converters. Controlling motors and electric generators by means of power converters has negative effects with the presence of overtvoltages and high-frequency currents throughout the installation. These effects accelerate the ageing process of the motors and, moreover, can provoke faults in the correct operating of the control circuits.



Thus, in his PhD, Mr Gubia has developed a generic method that can be adapted to each one of the possible installations with the view to identifying the origin of the high-frequency problems and, moreover, to analyse possible solutions. Likewise, the proposed method can be adapted to the design stage of a new installation.
In order to design this method, it was necessary to set up simulation models to reproduce the behaviour of motors, transformers, cables and the power converter, using frequencies in the order of 10 megaHertz. These frequencies are much higher then the tens of kiloHertz used in classical models.

Concretely, in this work it has been possible to reproduce the overvoltages produced as a result of using long connection cables between the inverter and the motor given that, the longer the cable, the greater the probability of overvoltage. This type of cable can be found, for example, in wind-powered generators, which incorporate the generator (the motor) in the upper part of the structure and the power converter at the base.



Also in this thesis, the problem of earthing currents in the installation and the supply grid was investigated, a problem known as electromagnetic interferences or conducted EMI. These have become highly important of late as they can provoke a fault in other units connected to the same earthing system. In fact, the regulations which limit the amount of such currents are increasingly stricter.

Eugenio Gubía has put forward that solutions to both problems, overvoltages and interferences, require the use of filters, the study of which, in this work, has been approached from a perspective of wave theory in transmission lines.
If the electromagnetic interferences do not have a technique or device for their quantification at the heart of the operation, neither can the efficacy of the filters applied to eliminate said effects be measured.

To this end, the work developed in this PhD offers a precise methodology for the analysis of both overvoltages and electromagnetic interferences and that, moreover, enables an efficient filter design.

The author of the thesis is currently researching the possibility of applying this methodology to other fields of power electronics.


Contact :
Iñaki Casado Redin
Nafarroako Unibertsitate Publikoa
inaki.casado@unavarra.es
(+34) 948 16 97 82

Garazi Andonegi | Basque research
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=370&hizk=I
http://www.unavarra.es

More articles from Power and Electrical Engineering:

nachricht Nano-scale process may speed arrival of cheaper hi-tech products
09.11.2018 | University of Edinburgh

nachricht Nuclear fusion: wrestling with burning questions on the control of 'burning plasmas'
25.10.2018 | Lehigh University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Putting food-safety detection in the hands of consumers

15.11.2018 | Information Technology

Insect Antibiotic Provides New Way to Eliminate Bacteria

15.11.2018 | Life Sciences

New findings help to better calculate the oceans’ contribution to climate regulation

15.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>