Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prospects brighten for future superconductor power cables

24.11.2003


New research from the National Institute of Standards and Technology (NIST) suggests that next-generation, high-temperature superconductor (HTS) wire can withstand more mechanical strain than originally thought. As a result, superconductor power cables employing this future wire may be used for transmission grid applications. Projected to become available in three to four years, the advanced superconductor wire (known in the industry as second generation HTS wire) is expected to cost less than the HTS wire used in today’s superconductor power cables. The NIST research is described in the Nov. 17 issue of Applied Physics Letters.



Superconductor power cables can carry three to five times the power of conventional copper cables. Compact, underground superconductor cables can be used to expand capacity and direct power flows at strategic points on the electric power grid and can be used in city centers where there is enormous demand, but little space under the streets for additional copper cables. One important challenge in using this next-generation HTS wire in such applications is the need for sufficient strength and resiliency to withstand the stretching and bending that occurs during power cable fabrication and installation.

Using superconductor ceramic coatings on metallic substrates fabricated by American Superconductor Corp. and Oak Ridge National Laboratory, the NIST researchers tested the material’s electromechanical properties. According to lead author Najib Cheggour, they found that these advanced wires could stretch almost twice as much as previously believed without any cracking of the superconductor coating and with almost no loss in the coating’s ability to carry electricity.


Moreover, the NIST team found that strain-induced degradation of the superconductors’ ability to carry electricity is reversible up to a certain critical strain value. That is, the materials return to their original condition once the strain is relieved. The strain tolerance of this future HTS wire was found to be high enough for even the most demanding electric utility applications. The discovered reversible strain effect also opens new opportunities for better understanding of the mechanisms governing the conduction of electricity in this class of superconductors.

Fred McGehan | EurekAlert!
Further information:
http://www.nist.gov/

More articles from Power and Electrical Engineering:

nachricht A simple, yet versatile, new design for chaotic oscillating circuitry inspired by prime numbers
22.05.2019 | Tokyo Institute of Technology

nachricht Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth
20.05.2019 | DOE/Princeton Plasma Physics Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A simple, yet versatile, new design for chaotic oscillating circuitry inspired by prime numbers

22.05.2019 | Power and Electrical Engineering

Synthesis of helical ladder polymers

21.05.2019 | Materials Sciences

Ultra-thin superlattices from gold nanoparticles for nanophotonics

21.05.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>