Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT’s plasmatron cuts diesel bus emissions, promises better gas engine efficiency

22.10.2003


MIT’s plasmatron coupled with an exhaust treatment catalyst removed 90 percent of the smog-producing nitrogen oxides (NOx) emitted from this bus.
PHOTO COURTESY / ARVINMERITOR


A bus in Indiana is the latest laboratory for MIT’s plasmatron reformer, a small device its developers believe could significantly cut the nation’s oil consumption as well as noxious emissions from a variety of vehicles.

The work will be the subject of an invited talk next Thursday, October 30, at a meeting of the American Physical Society’s Division of Plasma Physics in Albuquerque, NM.

The researchers and colleagues from industry report that the plasmatron, used with an exhaust treatment catalyst on a diesel engine bus, removed up to 90 percent of nitrogen oxides (NOx) from the bus’s emissions. Nitrogen oxides are the primary components of smog.



The plasmatron reformer also cut in half the amount of fuel needed for the removal process. “The absorption catalyst approach under consideration for diesel exhaust NOx removal requires additional fuel to work,” explained Daniel R. Cohn, one of the leaders of the team and head of the Plasma Technology Division at MIT’s Plasma Science and Fusion Center (PSFC). “The plasmatron reformer reduced that amount of fuel by a factor of two compared to a system without the plasmatron.”

Cohn noted that the plasmatron reformer also allowed the NOx absorption catalyst to be effective at the low exhaust temperatures characteristic of urban use.

These results, reported at a U.S. Department of Energy Diesel Engine Emissions Reduction (DEER) meeting in August, indicate that the plasmatron reformer, in conjunction with an NOx absorber catalyst, could be one of the most promising ways to meet stricter emissions limits for all heavy trucks and buses. The Environmental Protection Agency plans to institute the new limits by 2007.

“Diesel-engine vehicles generally do not have exhaust treatment systems,” Cohn said, adding that treating diesel exhaust is much more difficult than gasoline exhaust.

Under development for the last six years, the plasmatron is an onboard "oil reformer" that converts a variety of fuels into high-quality, hydrogen-rich gas. Adding a relatively modest amount of such gas to the gasoline powering a car or to a diesel vehicle’s exhaust is known to have benefits for cutting the emissions of pollutants. "Prior to the plasmatron reformer development, there was no attractive way to produce that hydrogen on board," said Cohn.

His colleagues are Leslie Bromberg and Alexander Rabinovich of the PSFC; John Heywood, director of MIT’s Sloan Automotive Lab and the Sun Jae Professor of Mechanical Engineering; and Rudolf M. Smaling, a graduate student in the Engineering Systems Division. Smaling is an engineering manager from ArvinMeritor, a major automotive and heavy truck components company that has licensed the plasmatron technology from MIT. The bus engine tests were performed at the company’s facility in Columbus, Ind., by an ArvinMeritor team.

Toward increased gasoline engine efficiency

The team is finding that the device could make vehicles cleaner and more efficient, with a potentially significant impact on oil consumption.

"If widespread use of plasmatron hydrogen-enhanced gasoline engines could eventually increase the average efficiency of cars and other light-duty vehicles by 20 percent, the amount of gasoline that could be saved would be around 25 billion gallons a year," Cohn said. That corresponds to around 70 percent of the oil that is currently imported by the United States from the Middle East."

The Bush administration has made development of a hydrogen-powered vehicle a priority, Heywood noted. "That’s an important goal, as it could lead to more efficient, cleaner vehicles, but is it the only way to get there? Engines using plasmatron reformer technology could have a comparable impact, but in a much shorter time frame," he said.

"Our objective is to have the plasmatron in production—and in vehicles—by 2010," Smaling said. ArvinMeritor is working with a vehicle concept specialist company to build a proof-of-concept vehicle that incorporates the plasmatron in an internal combustion engine. "We’d like to have a driving vehicle in one and a half years to demonstrate the benefits," Smaling said.

In the meantime, the team continues to improve the base technology. At the DEER meeting, Bromberg, for example, reported cutting the plasmatron’s consumption of electric power "by a factor of two to three."

The work is funded by the Department of Energy’s FreedomCAR and Vehicle Technologies Program and by ArvinMeritor.

Elizabeth Thomson | MIT
Further information:
http://web.mit.edu/newsoffice/nr/2003/plasmatron.html

More articles from Power and Electrical Engineering:

nachricht Nano-scale process may speed arrival of cheaper hi-tech products
09.11.2018 | University of Edinburgh

nachricht Nuclear fusion: wrestling with burning questions on the control of 'burning plasmas'
25.10.2018 | Lehigh University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>