Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Power from hydrogen moves a step closer

15.10.2003


An invention being developed jointly by the Low Temperature Engineering Group at the University of Southampton and BOC Edwards could help turn the dream of hydrogen technology into reality. In future, electricity, and in some applications useful heat, could be generated in a fuel cell through the combination of hydrogen and oxygen, with water being produced at the end of the process.



Howard Stone, an Engineering Doctorate student, and his supervisor Dr Neil Richardson of the School of Engineering Sciences are in the running for a national award after designing a new kind of hydrogen pump, which could eventually make the use of fuel cells in integrated home energy systems and private cars a practical proposition.

The work is sponsored by one of the world’s leading vacuum pump manufacturers, BOC Edwards of Crawley, West Sussex and forms part of a wider investigation into enabling technologies for the hydrogen economy.


Fuel cells themselves are not a new idea. Scientist Sir William Grove managed to split water into its constituent parts of hydrogen and oxygen in 1839. He also hypothesised that this electrolysis process in reverse could create electricity, then proved his theory experimentally. Hydrogen fuel cells were further developed by space scientists at NASA and were first used on the Gemini missions.

The new pump is designed to be extremely reliable, safe and efficient, precision-built for zero leaks. It embodies a number of innovative features which are the subject of patent applications.

Dr Richardson explained: ‘There are many advantages to developing energy systems employing hydrogen as the fuel, not least the potential absence of pollution. Supplies of hydrogen and oxygen are, in theory, plentiful. For example, water, H2O, is composed of nothing but hydrogen and oxygen. The difficulty is in accessing the components from this and other sources, in an efficient and reliable way that does not in itself create pollution and then storing and distributing the hydrogen fuel to end-users. It will take many years before the technology is ready to be used commercially because of the problems in creating the infrastructure but much work is underway to overcome the difficulties.’

The Carbon Trust has short-listed the invention for its Innovation Awards 2003. Winners will be announced at a ceremony in London on 6 November 2003.

Peter Shortt, Director of the Carbon Trust’s Low Carbon Innovation Programme said: ‘This awards scheme demonstrates the enormous potential which the UK has for leading the world in low carbon technology development.’

Sarah Watts | alfa
Further information:
http://www.soton.ac.uk

More articles from Power and Electrical Engineering:

nachricht Nano-scale process may speed arrival of cheaper hi-tech products
09.11.2018 | University of Edinburgh

nachricht Nuclear fusion: wrestling with burning questions on the control of 'burning plasmas'
25.10.2018 | Lehigh University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>