Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tungsten photonic crystals may answer the need for more power in advanced electrical applications

25.08.2003


Technical Insights’ High Tech Materials Alert



Scientists have discovered that when lattice tungsten filaments are heated, they are capable of emitting greater energy than solid tungsten filaments.

"Because of this significant advance, lattice tungsten filaments will likely meet the increasing power requirements of high-tech electrical systems, such as those in hybrid electric cars, sophisticated boats, engines, and industrial waste heat-driven electrical generators," says Technical Insights Analyst Aninditta Savitry.


Tungsten lattice emissions transfer more energy than solid tungsten filaments into certain bands of near-infrared wavelengths. The energy is used by photovoltaic cells to convert light into electricity. "The next generation of lighting may arrive if the results that are now possible at 1.5 microns can be extended to the entire visible spectrum," says Savitry.

Tungsten lattices have crystalline regularity and are capable of bending light without losing any energy. Computer chip production technology has enabled mass fabrication of these sub-micron-featured lattices. Precise channels of the crystal lattice have been constructed, forming a home for particular wavebands as they travel. The innovation here is to use the channels not to bend light, but to permit input energy to exit only with the desired frequency bands, and thereby enhance output.

Existing receivers absorb only limited bands of incoming energy across the wide spectrum of infrared radiation. Photonic lattices, when placed between a solar, dynamo, or fire generator and receiver, can be engineered to absorb energy.

Tungsten lattices have exhibited a conversion efficiency of 34 percent and electrical power density of about 14 W/cm2 when heated to 1,250 degree centigrade in a vacuum.

New analysis by Technical Insights, a business unit of Frost & Sullivan (http://www.ti.frost.com), featured in High-Tech Materials Alert, presents insights into the discovery of tungsten photonic crystals and their capabilities in providing higher power than competing materials.

Frost & Sullivan is a global leader in strategic growth consulting. Acquired by Frost & Sullivan, Technical Insights is an international technology analysis business that produces a variety of technical news alerts, newsletters, and reports. This ongoing growth opportunity analysis of tungsten photonic crystals is covered in High Tech Materials Alert, a Technical Insights subscription service, and in Advanced Materials Update, a Frost & Sullivan Technical Insights technology report. Technical Insights and Frost & Sullivan also offer custom growth consulting to a variety of national and international companies. Executive summaries and interviews are available to the press.


###
High Tech Materials Alert

Contact:
USA:
Julia Paulson
P: 210-247-3870
F: 210-348-1003
E: jpaulson@frost.com

APAC:
Pramila Gurtoo
DID: 603-6204-5811
Gen: 603-6204-5800
Fax: 603-6201-7402
E: pgurtoo@frost.com

Julia Paulson | EurekAlert!
Further information:
http://www.ti.frost.com/
http://www.frost.com/
http://www.Technical-Insights.frost.com

More articles from Power and Electrical Engineering:

nachricht Patented nanostructure for solar cells: Rough optics, smooth surface
18.09.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht With Gallium Nitride for a Powerful 5G Cellular Network - EU project “5G GaN2” started
17.09.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Glacial engineering could limit sea-level rise, if we get our emissions under control

20.09.2018 | Earth Sciences

Warning against hubris in CO2 removal

20.09.2018 | Earth Sciences

Halfway mark for NOEMA, the super-telescope under construction

20.09.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>