Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A more efficient, lighter device that generates up to three times more electricity from waves

20.05.2003


The world’s oceans hold the key to our future electricity needs. And their potential for producing power has yet to be fully exploited in terms of sustainable energy. The EUREKA WWEC project team hopes to bring exploitation of this renewable energy source a big step forward.



“We’ve developed a device that generates energy from the sea as easily as a wind turbine would do on land,” explains William Dick, managing director of the Irish company Wavebob that led the project. “There’s an awful lot of electricity to be had in the North Atlantic.”

Flouting convention, the EUREKA WWEC project team looked to develop a commercially licensable technology that could be deployed far out at sea in large arrays. “There’s much more power available offshore because waves lose energy as they come into shallower water,” explains Dick.


Floating largely below the water surface, self-reacting and loosely moored, the Wavebob developed by the WWEC project converts the energy of ocean waves into electricity.

Along with partners from Norway and the UK, Wavebob developed technology based on a heaving buoy. Unlike a familiar floating buoy, this pulls against a reaction mass, typically a massive plate or the sea bed, as it rises and falls. Up to now such devices have serious problems, there are practical limits to the reaction mass that may be carried, and they may oscillate too violently in big seas, “In the Wavebob, we have found effective and low cost solutions to these problems, - it is a significant technical breakthrough,” claims Dick.

The breakthrough is based on several innovations - an ability to recover power from big waves and to tune the buoy to varying sea-states.

“To date devices are built to match the most common wave frequency (the ’’spectral frequency’’) of the chosen site and then be less efficient when the wave climate changes. If the wave differs a lot from the design frequency, the device will sometimes be left just wallowing in the waves,” explains Dick. “The Wavebob is the first device that may be easily and rapidly tuned across a range of frequencies using on-board intelligence or remotely – making it much more efficient.”

It can also be quickly de-tuned, vitally important for survival in the North Atlantic where the 100-year extreme seas may reach 35 metres in height. Much of the R&D and design criteria have been focussed on the matter of survival, - ocean storms are hard taskmasters.

A lighter system means an impressive watts per tonne ratio and lower costs in offshore installation and mooring systems. The size depends on the local wave climate, as a device built for the North Atlantic would weigh several times more than one sized for the Eastern Mediterranean.

Dick found the additional status that comes with being part of a EUREKA project of particular value. “EUREKA has been important because it’s a sort of rubber stamp. It says look, the Ministerial Conference has looked at this, they like what you’re doing. It’s an endorsement,” he says.

Nicola Vatthauer | alfa
Further information:
http://www.eureka.be/wwec

More articles from Power and Electrical Engineering:

nachricht Electrons in the fast lane
02.07.2020 | Max-Planck-Institut für Polymerforschung

nachricht Gentle wall contact – the right scenario for a fusion power plant
02.07.2020 | Max-Planck-Institut für Plasmaphysik

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

Im Focus: A structural light switch for magnetism

A research team from the Max Planck Institute for the Structure of Dynamics (MPSD) and the University of Oxford has managed to drive a prototypical antiferromagnet into a new magnetic state using terahertz frequency light. Their groundbreaking method produced an effect orders of magnitude larger than previously achieved, and on ultrafast time scales. The team’s work has just been published in Nature Physics.

Magnetic materials have been a mainstay in computing technology due to their ability to permanently store information in their magnetic state. Current...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

The lightest electromagnetic shielding material in the world

02.07.2020 | Materials Sciences

Spintronics: Faster data processing through ultrashort electric pulses

02.07.2020 | Information Technology

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>