Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Z produces fusion neutrons, Sandia scientists confirm

07.04.2003


Huge pulsed power machine enters fusion arena



Throwing its hat into the ring of machines that offer the possibility of achieving controlled nuclear fusion, Sandia National Laboratories’ Z machine has created a hot dense plasma that produces thermonuclear neutrons, Sandia researchers announced today at a news conference at the April meeting of the American Physical Society in Philadelphia.

The neutrons emanate from fusion reactions within a BB-sized deuterium capsule placed within the target of the huge machine. Compressing hot dense plasmas that produce neutrons is an important step toward realizing ignition, the level at which the fusion reaction becomes self-sustaining.


The amount of energy a larger successor to Z could bring to bear offers the still-later possibility of high-yield fusion -- the state in which much more energy is released than is needed to provoke the reaction initially to occur. The excess energy could be used for applications such as the generation of electricity, said Tom Mehlhorn, a project leader on the machine.

Z causes reactions to occur neither by confining low density plasmas in dimensionally huge magnetic fields, as do tokomaks, nor by focusing intense laser beams on or around a target, as in laser fusion, but simply through the application of huge pulses of electricity applied with very sophisticated timing. The pulse creates an intense magnetic field that crushes tungsten wires into a foam cylinder to produce X-rays. The X-ray energy, striking the surface of the target capsule embedded in the cylinder, produces a shock wave that compresses the deuterium within the capsule, fusing enough deuterium to produce neutrons.

"Pulsed power electrical systems have always been energy-rich but power-poor," said Ray Leeper, a Sandia manager. "That is, we can deliver a lot of energy, but it wasn’t clear we could concentrate it on a small enough area to create fusion. Now it seems clear we can do that."

A partial confirmation of the result came about when theoretical predictions and lab outcomes were determined to be of the same order of magnitude. Predictions and measurements of the neutron yield were both of the order of 10 billion neutrons. The predicted neutron yield depends on the ion density temperature and volume. Those quantities were independently confirmed by X-ray spectroscopy measurements.

Neutron pulses were observed as early as last summer but researchers were wary that the output was produced by interactions between the target and ions generated by Z’s processes, rather than within the capsule itself. Ion-generated neutrons were not the point of the experiment, since they would not scale up into a high-yield event in any later, more powerful version of Z.

But a series of experiments completed in late March demonstrated that the production was within the capsule itself. To show this, researchers inserted xenon gas within the capsule. The gas prevented the capsule from getting hot during compression. Thus, the neutron yield dropped dramatically, as predicted.

The action takes place within a container the size of a pencil eraser, called a hohlraum, at the center of the Z machine, itself a circular device about 120 feet in diameter.

Sandia researchers Jim Bailey and Gordon Chandler led the experimental team and Steve Slutz performed theortical calculations. Sandian Carlos Ruiz and Gary Cooper of the University of New Mexico performed the neutron measurements.


Sandia Media Relations Contact: Neal Singer, (505) 845-7078, nsinger@sandia.gov

Neal Singer | EurekAlert!
Further information:
http://www.sandia.gov/news-center/news-releases/2003/nuclear-power/Zneutrons.html
http://www.sandia.gov

More articles from Power and Electrical Engineering:

nachricht Agricultural insecticide contamination threatens U.S. surface water integrity at the national scale
06.12.2018 | Universität Koblenz-Landau

nachricht Improving hydropower through long-range drought forecasts
06.12.2018 | Schweizerischer Nationalfonds SNF

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Innovative Infrared heat reduces energy consumption in coating packaging for food

12.12.2018 | Trade Fair News

New Foldable Drone Flies through Narrow Holes in Rescue Missions

12.12.2018 | Information Technology

Obtaining polyester from plant oil

12.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>