Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-powered appliances--no batteries needed

21.02.2003


Appliances that need no cables or batteries but operate purely on power generated from their surrounding vibrations could save manufacturers and consumers large sums of money, according to scientists at the University of Southampton.



Professor Neil White and his colleagues at the University’s Department of Electronics and Computer Science realised three years ago that sensors were being used in increasingly diverse application areas where physical connections to the outside world were difficult. For example, if a sensor was embedded within a structure or appliance, routine maintenance such as changing batteries could cause significant problems and cost time and money in terms of downtime.

Professor White and his team set out to explore the possibility of a self-powered sensor. They explored two devices: a magnet and coil arrangement where relative movement between the coil and the poles of a permanent magnet generates electricity by electromagnetic induction; and a second device based on piezo-electric material to generate electrical energy from vibration-induced deformations. They adopted the former device in the development of their system. The power generated by the sensor is based on its vibrations, so they needed to find applications that vibrate in order to test its effectiveness.


’We initially thought of road bridges’, comments Professor White, ’but modern-day bridges don’t shake that well, apart from the Millennium bridge that is! This will work best if you have a sensor buried in a device that you cannot easily access. The ideal scenario is to have a device that will generate power from a vibration source which will in turn power the sensor.’

The team has tested the sensor on several applications. Having assessed car floors, jack-hammers and motor cycle handlebars, they have found that helicopter rotor blades and fitness cycle machines might also be suitable applications.

’A self-powered sensor could be used to power additional features on equipment’, comments Professor White. ’For example, on a fitness cycle machine, the power generated could power the display panel. The big advantage is that it would reduce the need for batteries, cabling and downtime.’

Sarah Watts | alfa

More articles from Power and Electrical Engineering:

nachricht Mobile measuring instruments: Caught in flight
07.07.2020 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht PCB-embedded GaN-on-Si half bridge circuits for modular use
06.07.2020 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Quick notes in the genome

07.07.2020 | Life Sciences

Limitations of Super-Resolution Microscopy Overcome

07.07.2020 | Life Sciences

Put into the right light - Reproducible and sustainable coupling reactions

07.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>