Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kaixo, classifier of photoelectric cells

17.01.2003


Currently there is great talk of renewable energies and, amongst these solar energy is highly important. In order to harness and utilise this form of energy there are many technologies available of which one is solar panels. These panels are made up of photoelectric cells (the 80-100 little square units in any one panel).



Photoelectric cells are classified according to the power they produce, given that total power production of any panel can be limited by just one photoelectric cell of lower power production. Why is this? Because this cell has a maximum current and does not allow the transmission of more. The total current – and power – of the panel is thus limited.

From prototypes to machines


In the 90’s, in response to a request from the Isofoton company, the Bilbao Institute of Microelectronic Technology, TiM, proposed the development of an advanced system for the measurement of photoelectric cells. This photoelectric cell classifier was named Kaixo (“Hello” in the Basque language).

The initial proposal was shortly transformed into a prototype. But this prototype, although carrying out measurements correctly, was not completely automated.

But, in 1998, given the then development of renewable energies, many companies underwent considerable growth, Isofoton amongst them. So much so that today Isofoton is the first in Europe and seventh worldwide in the manufacture of photoelectric cells. That same year, Isofoton commissioned TiM a second prototype.

That second prototype had to be more automated and more precise than the first. To this end, light and temperature stability had to be far more strictly controlled. Also, the second prototype had to be suited to the industrial world, so that maintenance operations could be efficiently carried out and the classifier easily inserted on the photoelectric cell production line, in a more automated manner.

6 or 7 machines of the new prototype have been made. These machines measure the 60,000 photoelectric cells which Isofoton manufacture daily. Moreover, these measurements can be carried out while the cells are being manufactured, without interruption to the production line. Thus, if a defective cell is produced, the process by which the defect arises can be identified. Before the existence of the prototypes, all measurements were carried out manually, automation meaning much better precision in measurement and a significant saving in time.

Better solar panels

Currently there are a number of research projects under way which are targeting the increase in power produced by each cell. This is because to meet the energy needs of a family home, solar panels of about 20-30 m2 are required. If the power potential of the cells can be increased, the size of the panels could be reduced. This is important considering that the greater the surface area of the panels, the greater the cost (more cells are needed, more wiring, more glass, etc.).

For the immediate future TIM will continue to carry out research to enhance and optimise manufacturing processes, to obtain more efficient cells and a more automated industry.


Notes

Project director:
Juan Carlos Jimeno eta Victor Martinez
Research team:
J.C. Jimeno, V. Martinez, R. Gutierrez, F. Recart, G. Bueno, F. Hernando, Mª J. Saenz, Mª V. Rodriguez, C. Ikaran, S. Uriarte
Faculty:
Technological Institute of Microelectronics


Contact :
Garazi Andonegi
Elhuyar Fundazioa
garazi@elhuyar.com
(+34) 943363040

Garazi Andonegi | BasqueResearch
Further information:
http://tim.ehu.es

More articles from Power and Electrical Engineering:

nachricht A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes
20.07.2018 | Science China Press

nachricht Future electronic components to be printed like newspapers
20.07.2018 | Purdue University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>