Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny atomic battery developed at Cornell could run for decades unattended, powering sensors or machines

18.10.2002


The prototype device uses a copper cantilever 2 centimeters long. Future nanofabricated versions could be smaller than one cubic millimeter.
Copyright © Cornell University


Beta particles (electrons) released from a thin film of radioactive material are absorbed by the cantilever, giving it a negative charge. The cantilever is pulled down toward the positively charged film until it is near enough for a current to flow and equalize the charge. The cantilever springs back up, and the process repeats.
Copyright © Cornell University


While electronic circuits and nanomachines grow ever smaller, batteries to power them remain huge by comparison, as well as short-lived. But now Cornell University researchers have built a microscopic device that could supply power for decades to remote sensors or implantable medical devices by drawing energy from a radioactive isotope.

The device converts the energy stored in the radioactive material directly into motion. It could directly move the parts of a tiny machine or could generate electricity in a form more useful for many circuits than has been possible with earlier devices. This new approach creates a high-impedance source (the factor that determines the amplitude of the current) better suited to power many types of circuits, says Amil Lal, Cornell assistant professor of electrical and computer engineering.

Lal and Cornell doctoral candidate Hui Li described a prototype of the device at a U.S. Department of Defense meeting of Defense Advanced Research Projects Agency (DARPA) investigators in Detroit in August. The prototype is the first MEMS (micro-electromechanical systems) version of a larger device that Lal designed and built while a member of the faculty at the University of Wisconsin, Madison, working with nuclear engineering professors James Blanchard and Douglas Henderson.



The prototype is made up of a copper strip 1 millimeter wide, 2 centimeters long and 60 micrometers (millionths of a meter) thick that is cantilevered above a thin film of radioactive nickel-63 (an isotope of nickel with a different number of neutrons from the common form). As the isotope decays, it emits beta particles (electrons). Radioactive materials can emit beta particles, alpha particles or gamma rays, the last two of which can carry enough energy to be hazardous. Lal has chosen only isotopes that emit beta particles, whose energy is small enough not to penetrate skin, to be used in his device.

The emitted electrons collect on the copper strip, building a negative charge, while the isotope film, losing electrons, becomes positively charged. The attraction between positive and negative bends the rod down. When the rod gets close enough to the isotope, a current flows, equalizing the charge. The rod springs up, and the process repeats. The principle is much like that underlying an electric doorbell, in which a moving bar alternately makes and breaks the electric circuit supplying an electromagnet that moves the bar.

Radioactive isotopes can continue to release energy over periods ranging from weeks to decades. The half-life of nickel-63, for example, is over 100 years, and Lal says a battery using this isotope might continue to supply useful energy for at least half that time. (The half-life is the time it takes for half the atoms in an element to decay.) Other isotopes offer varying combinations of energy level versus lifetime. And unlike chemical batteries, the devices will work in a very wide range of temperatures. Possible applications include sensors to monitor the condition of missiles stored in sealed containers, battlefield sensors that must be concealed and left unattended for long periods, and medical devices implanted inside the body.

The moving cantilever can directly actuate a linear device or can move a cam or ratcheted wheel to produce rotary motion. A magnetized material attached to the rod can generate electricity as it moves through a coil. Lal also has built versions of the device in which the cantilever is made of a piezoelectric material that generates electricity when deformed, releasing a pulse of current as the rod snaps up. This also generates a radio-frequency pulse that could be used to transmit information. Alternatively, Lal suggests, the electrical pulse could drive a light-emitting diode to generate an optical signal.

In addition to powering other devices, the tiny cantilevers could be used as stand-alone sensors, Lal says. The devices ordinarily operate in a vacuum. But the sensors might be developed to detect the presence or absence of particular gases, since introducing a gas to the device changes the flow of current between the rod and the base, in turn changing the period or amplitude of the oscillation. Temperature and pressure changes also can be detected.

Lal, Li and Cornell doctoral candidate Hang Guo are now building and testing practical sensors and power supplies based on the concept. The prototype shown in August was gigantic by comparison with the latest versions, Lal says. An entire device, including a vacuum enclosure, could be made to fit in less than one cubic millimeter, he says.

Bill Steele | EurekAlert!
Further information:
http://www.news.cornell.edu/

More articles from Power and Electrical Engineering:

nachricht Researchers measure near-perfect performance in low-cost semiconductors
18.03.2019 | Stanford University

nachricht Robot arms with the flexibility of an elephant’s trunk
18.03.2019 | Universität des Saarlandes

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Bacteria may travel thousands of miles through the air globally

25.03.2019 | Life Sciences

Key evidence associating hydrophobicity with effective acid catalysis

25.03.2019 | Life Sciences

Drug diversity in bacteria

25.03.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>