Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New system for storing lithium-polymer energy

09.09.2002


The basque technology centre CIDETEC is working on a project about lithium-polymer energy with the collaboration of the companies CEGASA and ZIGOR.



Actually, they are in the first stage of the project. Initially, they analysed the structure, design and development of different electrode materials with multiple characteristics (cathode and anode) to use lithium-polymer in batteries.

The results of the project enabled the development of a lab-scale prototype of a rechargeable graphite-polypirrol battery. The area of that battery is 1,9 x 4,5 cm² and it can provide a energy density of 125 Wh/kg. If we compare those results with the dimensions of commercial lithium-ion batteries that use inorganic oxide of intercalation, the battery made by CIDETEC has slightly lower energy density values. However, if we take into account all the factors that can be modified during the chemical synthesis of polymer conductors, it seems possible to obtain electrodes that may have capacities close to the theoretical ones (450 Ah/kg). That would mean a great improvement of inorganic oxides of intercalation. At the present CIDETEC is trying to replace the liquid electrolyte with a solid electrolyte, which would transform its battery in an organic system.


The followings are the technological innovations that have been obtained until the present:

  • Possibility to remove metallic lithium from secondary lithium batteries, high energy density and high average life (superior than 1000 cycles of loading and unloading)
  • Reduction of weight and dimension, flexibility of design and processing, and all that associated with the use of polymer electrodes based on polymer conductors.
  • Reduction of internal resistance and improvement of chemical stability and electrochemistry of the battery. The latter has been obtained thanks to the higher ionic conductibility of new poly-electrolytes, and that way, apart from extending the average life of the battery, it has been possible to include the modularity concept in the design.

The organic batteries made of the above mentioned characteristics are useful for applications where the weight of the battery is determining, such as in telephones, computers and mobile phones. Nowadays, those appliances are widely sold and it is foreseen an increase in their sales in the last years. Thanks to the organic batteries all those appliances may be easily recycled, eliminating the most toxic components of the present (such as inorganic oxides).

Garazi Andonegi | alfa

More articles from Power and Electrical Engineering:

nachricht Smart windows that self-illuminate on rainy days
29.05.2020 | Pohang University of Science & Technology (POSTECH)

nachricht Skoltech scientists get a sneak peek of a key process in battery 'life'
28.05.2020 | Skolkovo Institute of Science and Technology (Skoltech)

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>