Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanometer-Scale Light Source is First to Show Single-Molecule Electroluminescence

12.08.2002


Using photon emissions from individual molecules of silver, researchers at the Georgia Institute of Technology have created what may be the world’s smallest electroluminescent light source.



Believed to be the first demonstration of electroluminescence from individual molecules, the work could lead to new types of nanometer-scale optical interconnects, high-resolution optical microscopy, nanometer-scale lithography and other applications that require very small light sources. And because single molecules are known to emit one photon at a time, the technique could ultimately be the basis for high-efficiency quantum information processing and cryptography.

Though the effect was first reported in silver clusters composed of 2-8 atoms, the researchers also demonstrated electroluminescence in similarly prepared copper clusters, suggesting the effect may broadly apply to other metals. Details of the research were reported in the August 6 issue of the Proceedings of the National Academy of Sciences.


"This is the first time that anyone has seen electroluminescence from individual molecules," said Robert Dickson, assistant professor in Georgia Tech’s School of Chemistry and Biochemistry. "What we have observed involves sub-nanometer scale sources to which an electric field is applied. These molecules emit very strongly, and are very robust."

Dickson and collaborators Tae-Hee Lee and Jose Gonzalez began with thin films of silver oxide that are not electroluminescent. By exposing the film to electrical current of approximately one amp, they "activated" some of the silver oxide molecules, which then appeared within "discolored" regions in the film. When electrodes were attached to the film and an alternating current applied, a thin line of silver clusters began to emit light in colors that varied depending on the size of the clusters. The system operated at room temperature.

"When you zoom in more closely, you can see the emissions coming from single molecules," said Dickson. "They blink and have dipole emission patterns. You see an incredibly thin line of emissive species close to the middle of the sample."


Electroluminescence occurs when an electron recombines with a positively charged molecule from which a single electron has been removed to create an electron-hole pair. First, an electron is removed from a molecule, creating a positive charge. Then, an electron is quickly injected into a different state of the same molecule. Because of the charge differences, the electron is attracted to the hole, and when they recombine, a photon is released.

While normally stimulated by applying direct current (DC), the Georgia Tech group observed a dramatically enhanced response from high frequency alternating current (AC).

While DC voltage produced electroluminescence in the activated silver clusters, Dickson and his colleagues found that high frequency AC voltage -- above 150 megahertz -- produced a response as much as 10,000 times greater. Dickson believes the AC voltage created rapid recombination within single molecules in a very narrow section of a sample, producing the enhanced response. Bulk materials normally cannot respond quickly enough to the alternating current to enhance the electroluminescence to such a large degree.

The AC current was more efficient than DC current at converting electrical current to light because it injects the electron charge at just the right time, minimizing the amount of energy lost to production of heat, Dickson explained. From a practical standpoint, that increases the operating life of the emitting clusters and reduces the amount of current required to produce light, he noted.

"We know that the charge is recombining in the molecules because you can simultaneously measure the electroluminescence and the current, and the peaks are correlated," he said. "This is an extremely interesting materials system, not only because of the single-molecule electroluminescence, but also because of the resonance we see at relatively high frequencies."

Though the discovery may have important implications for optoelectronic devices, Dickson’s group is focusing first on understanding the basic process.

"We are concentrating on understanding the very fundamental aspects of this: what the nature of the emission is, how the emission occurs, the different time scales for electron injection, hole injection and recombination," he said. "We need to know how to better control this before we can begin to use it in nanometer scale devices or as nanometer scale optoelectronic components in circuitry. A lot of engineering will have to be done to make any potential optoelectronic devices both useful and stable."

The electroluminescence research builds on earlier work done by Dickson and colleagues Lynn Peyser and Amy Vinson that demonstrated optical storage potential of thin-film silver oxide clusters. In that work, reported in the journal Science in January 2001, the researchers demonstrated binary optical storage by writing and reading simple images recorded on films of silver oxide nanoparticles activated by light of a specific frequency. That work is continuing, and advances have been made toward potential optical storage systems.

Support for Dickson’s research comes from the Sloan and Dreyfus Foundations, as well as internal Georgia Tech research funds.


RESEARCH NEWS & PUBLICATIONS OFFICE
Georgia Institute of Technology
430 Tenth Street, N.W., Suite N-116
Atlanta, Georgia 30318 USA

John Toon | EurekAlert!
Further information:
http://gtresearchnews.gatech.edu/rnpo.html

More articles from Power and Electrical Engineering:

nachricht Neuron and synapse-mimetic spintronics devices developed
17.04.2019 | Tohoku University

nachricht New discovery makes fast-charging, better performing lithium-ion batteries possible
16.04.2019 | Rensselaer Polytechnic Institute

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Scientists propose new theory on Alzheimer's, amyloid connection

23.04.2019 | Life Sciences

Research on TGN1412 – Fc:Fcγ receptor interaction: Strong binding does not mean strong effect

23.04.2019 | Life Sciences

Bacteria use their enemy -- phage -- for 'self-recognition'

23.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>