Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Nanosculpture” Could Enable New Types of Heat Pumps and Energy Converters

21.07.2008
Researchers at Rensselaer Polytechnic Institute have discovered a new technique for growing single-crystal nanorods and controlling their shape using biomolecules. The research, published in the journal Advanced Materials, could enable the development of smaller, more powerful heat pumps and devices that harvest electricity from heat.

A new technique for growing single-crystal nanorods and controlling their shape using biomolecules could enable the development of smaller, more powerful heat pumps and devices that harvest electricity from heat.

Researchers at Rensselaer Polytechnic Institute have discovered how to direct the growth of nanorods made up of two single crystals using a biomolecular surfactant. The researchers were also able to create “branched” structures by carefully controlling the temperature, time, and amount of surfactant used during synthesis.

“Our work is the first to demonstrate the synthesis of composite nanorods with branching, wherein each nanorod consists of two materials — a single-crystal bismuth telluride nanorod core encased in a hollow cylindrical shell of single-crystal bismuth sulfide,” said G. Ramanath, professor of materials science and engineering at Rensselaer and director of the university’s Center for Future Energy Systems, who led the research project. “Branching and core-shell architectures have been independently demonstrated, but this is the first time that both features have been simultaneously realized through the use of a biomolecular surfactant.”

Most nanostructures comprised of a core and a shell generally require more than one step to synthesize, but these new research results demonstrate how to synthesize such nanorods in only one step.

“Our single-step synthesis is an important development toward realizing large-scale synthesis of composite nanomaterials in general,” said Arup Purkayastha, who worked on the project as a postdoctoral researcher at Rensselaer and is now a scientist with Laird Technologies in Bangalore, India.

Because of their attractive properties, core-shell nanorods are expected to one day enable the development of new nanoscale thermoelectric devices for power generation, as well as nanoscale heat pumps for cooling hot spots in nanoelectronics devices.

“Our discovery enables the realization of two very important attributes for heat dissipation and power generation from heat,” Ramanath said. “First, the core-shell junctions in the nanorods are conducive for heat removal upon application of an electrical voltage, or generating electrical power from heat. Second, the branched structures open up the possibility of fabricating miniaturized conduits for heat removal alongside nanowire interconnects in future device architectures.”

The researchers discovered that synthesis at high temperatures or with low amounts of the biomolecular surfactant L-glutathonic acid (LGTA) yields branched nanorod structures in highly regulated patterns. In contrast, synthesis at low temperatures or with high levels of LGTA results in straight nanorods without any branching. It is interesting to note that at the point of branching, atoms in the branch resemble a mirror image of the parent crystal – a finding that reinforces Ramanath’s conclusion that LGTA is able to induce branching through atomic-level sculpture.

“Since LGTA is similar to biological molecules, our discovery could be conceivably used as a starting point to explore the use of proteins and enzymes to atomically sculpt such nanorod architectures through biological processes,” said Ramanath

Results of the study, titled “Surfactant-Directed Synthesis of Branched Bismuth Telluride/Sulfide Core/Shell Nanorods,” were recently published online and will be featured in an upcoming issue of the journal Advanced Materials.

The full study may be viewed at: http://dx.doi.org/10.1002/adma.200702572

Along with Ramanath and Purkayastha, co-authors of the paper include: Theodorian Borca-Tasciuc, associate professor of mechanical, aerospace and nuclear engineering at Rensselaer; Rensselaer materials science and engineering postdoctoral researcher Huafang Li; Rensselaer graduate students Makala S. Raghuveer and Darshan D. Gandhi; as well as materials science and engineering professor Raju V. Ramanujan, assistant professor Qingyu Yan, and postdoctoral researcher Zhong W. Liu of Nanyang Technological University in Singapore.

The research project was supported by the Interconnect Focus Center New York through MARCO, DARPA and New York state. The National Science Foundation and Honda Motor Co. also supported this project through research grants.

About Rensselaer

Rensselaer Polytechnic Institute, founded in 1824, is the nation’s oldest technological university. The university offers bachelor’s, master’s, and doctoral degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of fields, with particular emphasis in biotechnology, nanotechnology, information technology, and the media arts and technology. The Institute is well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

Michael Mullaney | Newswise Science News
Further information:
http://www.rpi.edu

More articles from Power and Electrical Engineering:

nachricht Scientists print sensors on gummi candy: creating microelectrode arrays on soft materials
21.06.2018 | Technische Universität München

nachricht Electron sandwich doubles thermoelectric performance
20.06.2018 | Hokkaido University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>