Europe takes the pole position in flexible display market

While Asian firms currently dominate the overall display screen market, Europe is now a leader in the production of flexible electronic displays segment, thanks to a project that brought together manufacturers such as Philips, Thales and Nokia with the continent’s leading academic researchers.

There are only four factories in the world capable of producing flexible displays. The European consortium developing the flexible electronic displays has already introduced the technologies into factories in the UK, Germany, France and Taiwan.

Flexible displays, a long sought-after innovation, can be shaped to fit curved surfaces. They can even be flexed and rolled up like a magazine. The key is to replace the usual glass display backing with plastic.

Partners in FlexiDis have commercialised three new processes for doing just that.

“You could introduce a flexible display into the market to battle against the existing flat panel display on glass and all of its applications,” says Dr Eliav Haskal, of Philips Research, which is coordinating the project. “Alternatively you could introduce a flexible display into a market which doesn’t yet exist because conventional display technologies cannot provide the solution. This second route is the one that’s going to be first on the market.”

Flexible e-readers

Pioneering this new approach is Polymer Vision, a spin-off from Philips. In cooperation with telecom Italia Mobile the company is producing a device called Readius, which is about the size of a mobile phone and has an ‘e-paper’ display that unrolls to reveal a five-inch screen.

Readius can be used for e-books and also for emails. It is being produced in a factory in Southampton. This will be the world’s first product to use a flexible active matrix display.

Another company, Plastic Logic, is setting up a factory in Dresden to produce more than a million flexible displays every year. Plastic Logic was spun out of Cambridge University in 2000 as a commercial entity.

“They have focused on making a large A4-sized flexible e-reader device less than half a millimetre thick, which you can use as a robust replacement for reading information on a lap-top,” says Dr Haskal.

Thales Avionics LCD, near Grenoble, runs the only factory in Europe making displays based on liquid crystal devices (LCDs), mainly for the demanding avionics sector. The company has been running trials with a FlexiDis technology called EPLaR, in which plastic displays are manufactured on glass sheets allowing them to be made in factories set up for rigid LCD panels.

Full-colour displays

“Thales Avionics LCD will work further with this technology because it gives them a leg-up on the competition,” says Dr Haskal. “They’re going to keep working on niche products which have high added values so that they don’t need the economies of scale.”

In due course the Thales factory will be able to produce full-colour displays based on organic light-emitting diodes (OLEDs).

Thales is also going to take part in a new EU-funded research project called Amazoled, which is being set up to advance the technology further using OLEDs manufactured in the company’s factory.

Europe has no factories capable of producing the large LCD panels being manufactured in Asia and it does not make any sense to try and compete. So some of the technologies developed by the FlexiDis team have been licensed to Prime View International, a Taiwanese company that will produce flexible displays for the mass consumer market.

So far there is little commercial competition either from Asia or the USA. The American government has invested $43.7 million in a five-year project to develop flexible displays for use by the US army, to the extent of taking over a former Motorola factory in Arizona. The work will start with a focus on military applications.

“They’ve done a nice job but realistically that isn’t a production facility but rather a really big R&D facility,” says Dr Haskal.

Creative applications

The market for flexible displays is estimated to run to hundreds of millions of euros over the next five years and there is no shortage of ideas for new products.

Apart from e-readers – and the Chinese authorities are discussing the use of such devices on a large scale in schools – other early applications are likely to include ‘point of purchase’ signs on shelves or clothing racks in shopping outlets. French retailer Carrefour is already using glass LCD displays for price indicators but these have been found to be vulnerable to damage from shopping trolleys.

Another use will be in the smart card market. Electronic tickets used on public transport systems could incorporate a flexible display that shows the remaining value on the card. Credit cards could have a display that shows a one-time code to be used to authenticate secure transactions.

“Europe can succeed in this market when it plays to its strengths,” says Dr Haskal.

“We’re not good at economy of scale, high-investment factories and enormous production efforts,” he says. “We’re good at design, at creating novel applications and putting a display in a place that we never thought of before – a rollable display, an e-reader display with new functionality or a curved display in the sleeve of a jacket. One of our partners in FlexiDis has put a display in a snowboard. That’s pretty niche, if you ask me. Each one of these new ideas can generate a business.”

FlexiDis received funding from the EU's Sixth Framework Programme for research.

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors