Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More sensitive radiology monitoring in the Basque Country

10.06.2008
Networks for radiological monitoring are designed to monitor radioactivity levels in the environment and detect possible incidents. The PhD thesis defended by Ms Natalia Alegría at the University of the Basque Country provides a scientific methodology for distinguishing between natural radioactivity and radiological incidents caused externally.

Most countries currently have radiological monitoring to monitor radioactivity levels in the environment and to detect the level of natural radioactivity. Also amongst its aims is to monitor the compliance with agreements such as the Comprehensive Nuclear Test Ban Treaty, as well as to detect and quantify a possible nuclear or radiological accident.

Depending on the frequency of the samples taken, these networks are classified into two groups: control networks, the aim of which is to measure radioactivity in the air, the water, the soil and in foods; and alert networks for informing of the anomalous presence of values in air and water.

To this end, alert networks take samples with frequencies of less than one hour and operate 24 hours a day. In Spain there exists a Radiological Alert Network and there are also four Autonomous Communities with their own networks, one of which the Basque Government launched in 2001.

Nevertheless, there has not existed to date a scientific methodology which enabled distinguishing between natural and anomalous values of radioactivity, to the point that certain radiological situations could go undetected. Ms Natalia Alegría Gutiérrez addressed this lacuna at the University of the Basque Country (UPV-EHU) with her PhD thesis, Drawing up alarm levels and analysis of transitory situations at radiological monitoring stations.

Dr. Alegría is an industrial engineer specialising in Energy Techniques and is currently working as lecturer-collaborator in the area of Fluid Mechanics at the Higher School of Engineering in Bilbao. Her PhD thesis was led by Dr. Fernando Legarda Ibáñez, of the Department of Nuclear Engineering and Fluid Mechanics and has been undertaken with the cooperation of the Nuclear Security Council (CSN).

The influence of precipitation

In order to detect a radiological incident, Dr. Alegría took the dose rate of gamma radiation, i.e. the amount of energy we receive per unit of mass over a specified unit of time. Her prime goal was to establish values for normal radiation situations, their origin being in natural sources of radiation: cosmic radiation from the Sun and interstellar spaces; and terrestrial radiation from radionucleids (originating in uranium or potassium, amongst others) present in the earth. Ms Alegría has chronologically ordered recorded dose rate values and shown that their evolution is constant (being represented on a horizontal line), although they do have an irregular component due to changes in meteorological values such as rainfall and lightning. That is, recorded values increase during periods of precipitation. The fact is that rainfall makes radioactivity present in the air fall to the earth’s surface (or to the rooftop where the probe or detector is located), and this causes the recorded dose rate to increase, without the cause being a radiological incident.

Effectively, the meteorological variables make it impossible for the evolution of radioactivity to be graphically represented using histograms. This is why Dr. Alegría decided to separate the behaviour of the dose rates over different periods, depending on the level of precipitation. Thus, she defined a dry period (0 litres per square metre), a wet period (whenever rainfall is greater than 0 litres per square metre) and a transition period, that encompasses the period from the end of the precipitations to the point where the gamma radiation dose rates return to those of the dry period.

Natural radioactivity and anomalous values

Taking as reference the magnitude that Currie called critical limit, Dr. Alegría calculated the critical limit of both the dry and rainy periods. In this way, every time the limits of the previous year are exceeded, a base alarm level is generated which will alert the experts to a possible radiological incident. To this end, she drew up a mathematical model in order to represent the increase undergone by the radioactivity during the rainy period with respect to the dry period.

Although the dose rate increases during the rainy period, it does not do so in a manner directly proportional to the amount of water fallen, but exponentially. According to Dr. Alegría, this is due to the rainfall transporting components derived from chains of radon (a radioactive gas) to the earth’s surface. In her PhD she also describes the systems of equations she used to distinguish between concentrations of radon due to natural causes and those caused by a radiological incident.

In conclusion, the PhD work presented by Ms Alegría at the UPV/EHU has made the radiological monitoring network in the Basque Country more sensitive, significantly reducing the number of alarms, but without there being radiological incidents that have gone undetected. The alarms of this network currently are triggered whenever there are external causes and not when a rise in natural radioactivity is caused by precipitations.

Alaitz Ochoa de Eribe | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1773&hizk=I

More articles from Power and Electrical Engineering:

nachricht The role of Sodium for the Enhancement of Solar Cells
17.07.2018 | Max-Planck-Institut für Eisenforschung GmbH

nachricht Behavior-influencing policies are critical for mass market success of low carbon vehicles
17.07.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>