Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Goodbye to batteries and power sockets

09.06.2008
When a factory machine breaks down, it’s hard to know what to do.

Production often comes to a standstill until the error has finally been pinpointed – and that can take hours. The causes are legion; in many cases it is all due to a single interrupted contact.

Consequently, many manufacturers have long been hoping for a technology that will work without vulnerable power and data cables. The idea is basically feasible, using small devices that harvest energy from their surroundings and provide their own power supply rather like a solar calculator. Experts speak of energy self-sufficient sensor-actuator systems. These high-tech components normally consist of a sensor, a processor and a radio module.

They measure position, force or temperature and transmit the data instantaneously by radio. In this way, vital machine data reach the control center without using cables at all. Is the machine overheating? Is the drive shaft wearing out?

So far, however, there are hardly any off-the-shelf solutions with their own energy supply. Research scientists from the Fraunhofer Technology Development Group TEG in Stuttgart have now joined forces with industrial partners and universities in the EnAS project, sponsored by the Federal Ministry of Economics and Technology, to build a transportable demonstrator. This is a miniature conveyer system driven by compressed air that transports small components in an endless cycle.

The round workpieces are picked up by a vacuum gripper, transported a short way and set down on a small carrier, which conveys the parts back to the starting point. All steps of the process are monitored by sensors as usual. The special feature of the demonstrator is that the sensing elements have no need of an external power supply. The machine uses photo diodes, for instance, to check whether the carrier has been correctly loaded – if so, the light from the diodes is obscured by the workpieces. Solar cells supply the energy for this workpiece detector.

Another example are pressure sensors which monitor the work of the vacuum gripper. In this case, the power is supplied by piezoelectric flexural transducers. The piezoelectric elements contain ceramics that generate electricity on being deformed. This deformation happens when the vacuum pump is switched on and off. The electricity thus generated is sufficient to send an OK signal to the central control unit. The sensor thus draws its power from pressurized air that is present anyway.

Within the next two years, the various system components are expected to make their way into everyday industrial use.

Monika Weiner | alfa
Further information:
http://www.zv.fraunhofer.de
http://www.fraunhofer.de/EN/press/pi/2008/06/ResearchNews062008Topic5.jsp

More articles from Power and Electrical Engineering:

nachricht Nano-scale process may speed arrival of cheaper hi-tech products
09.11.2018 | University of Edinburgh

nachricht Nuclear fusion: wrestling with burning questions on the control of 'burning plasmas'
25.10.2018 | Lehigh University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>