Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robotic Arm Combines Manipulation of Objects with Mobility

05.06.2008
Researchers have given a mobile robotic arm the ability to manipulate objects by allowing it to "see" its environment through a digital camera. Giving mobile robots the ability to manipulate objects will extend their uses in many areas including medical care, household assistance and planetary exploration.

Movies portray robots that can move through the world as easily as humans, and use their hands to operate everything from dishwashers to computers with ease. But in reality, the creation of robots with these skills remains a major challenge. Researchers at the University of Massachusetts Amherst are solving this problem by giving a mobile robotic arm the ability to “see” its environment through a digital camera.

“Mobile robots play an important role in many settings, including planetary exploration and manufacturing,” says Dov Katz, a doctoral student of computer science. “Giving them the ability to manipulate objects will extend their use in medical care and household assistance.”

Results of experiments performed by Katz and Oliver Brock, a professor of computer science, were presented at the Proceedings of the International Electrical and Electronics Engineers Conference on Robotics and Automation May 21 in Pasadena, Calif.

So far, the team has successfully taught their creation, dubbed the UMan, or UMass Mobile Manipulator, to approach unfamiliar objects, such as scissors, garden shears and jointed wooden toys – and learn how they work by pushing on them and observing how they change, the same process used by children as they explore the world.

Like a child forming a memory, UMan then stores this knowledge of how the objects move as a “kinematic model” which can be used to perform specific tasks, such as opening scissors and shears to a 90 degree angle. Video shot by the team shows UMan easily completing this task.

According to Katz, teaching the UMan, to “walk” was the easy part. “UMan sits on a base with four wheels that allow it to move in any direction, and a system of lasers keeps it from bumping into objects by judging their distance from the base,” says Katz, who filmed the UMan taking its first trip around the laboratory navigating through a maze of boxes.

What turned out to be harder was teaching the robotic arm to manipulate objects.
“Robots in factories perform complex tasks with ease, but one screw out of place can shut down the entire assembly line,” say Katz, who recently met with representatives from Toyota Motors. “Giving robots the same skills as humans turned out to be much more difficult than we imagined, which is why we don’t have robots working in unstructured environments like homes.”

The key was giving the UMan eyes in the form of a digital camera that sits on the wrist. Once they added the camera, which coupled manipulating objects with the ability to “see,” the complex computer algorithms needed to instruct the UMan to perform specific tasks became much simpler.

A video shot by the team shows what the UMan “sees” as it approaches a jointed wooden toy on a wooden table, which appears as a uniform field of green dots. The first gentle touch from the hand quickly separates the toy from the background, and moving the various parts eventually labels each section with a specific color, identifying all the moving pieces and the joints holding them together. UMan then stores this knowledge, and can use it to put the object in a specific shape.

Future research by Katz and Brock will focus on teaching UMan to operate different types of machines, including doorknobs and light switches, and work on taking UMan’s manipulation skills into three dimensions.

“Once robots learn to combine movement, perception and the manipulation of objects, they will be able to perform meaningful work in environments that are unstructured and constantly changing,” says Katz. “At that point, we will have robots that can explore new planets and clean houses in a flexible way.”

Dov Katz | newswise
Further information:
http://www.nsm.umass.edu

More articles from Power and Electrical Engineering:

nachricht New combustion process - Record efficiency for a gas engine
21.06.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht The new technology will significantly enhance energy harvest from PV modules
12.06.2019 | Estonian Research Council

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

'Sneezing' plants contribute to disease proliferation

24.06.2019 | Agricultural and Forestry Science

Researchers find new mutation in the leptin gene

24.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>