Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Renesas collaborates with IMEC on reconfigurable RF transceivers

22.04.2008
Renesas Technology Corp., one of the world's leading semiconductor system solutions providers for mobile, automotive and PC/AV (Audio Visual) markets, has entered into a strategic research collaboration with IMEC, Europe's leading independent research center in the field of nanoelectronics, to perform research on 45nm RF transceivers targeting Gbit/s cognitive radios.

To this end, Renesas has joined IMEC’s software-defined radio (SDR) front-end program. This research program includes reconfigurable RF solutions, high-speed/low-power analog-to-digital converters (ADCs) and new approaches to digitize future RF architectures.

Researchers from Renesas will reside at IMEC to closely collaborate with IMEC’s research team. In this way, they will build a fundamental understanding and develop robust solutions for Renesas future mobile electronics products.

On the near term, IMEC’s SDR-front-end program targets the development of a new generation cost-, performance- and power-competitive reconfigurable radio in 45nm digital CMOS technology. This radio will have a programmable center frequency from 100MHz to 6GHz and programmable bandwidth from 100kHz to 40MHz covering all key communication standards, with a merit comparable to state-of-the-art single mode transceivers.

The research program builds on IMEC’s previous groundbreaking 130nm RF transceiver results (published at ISSCC 2007), namely the world’s first prototype of a true SDR transceiver IC (SCALDIO). Also, further evolutions of IMEC’s record breaking ADCs (merit record by IMEC at ISSCC 2008 of 40Msamples/s, 9 bit, 54fJ/conversion step) will be developed within this collaboration.

"We are excited that one of the world’s leading semiconductor companies has joined our SDR-front-end program. This proves the importance of our recent results on SDR and ADCs, and reflects the value IMEC brings to its industry partners in this RF research program;" said Rudy Lauwereins, Vice President Nomadic Embedded Systems at IMEC. "We are looking forward to a close cooperation with the Renesas research team, to develop together our upcoming generation of breakthrough RF designs.

"The ability to develop an innovative RF architecture with scaled-down CMOS technology and circuit technologies in transceiver products supporting next-generation cellular standards such as 3GPP-LTE and 4G’s is one of the key differentiators for our products that are superior in cost advantages, performance and power," said Masao Nakaya, board director and executive general manager of LSI product technology unit at Renesas Technology Corp.

"We are pleased to be a part of IMEC’s SDR-front-end program, collaborating on the research to explore new technologies for multi-standard RF transceivers. We aim to contribute to the early realization of next generation mobile phones by combining our advanced semiconductor solutions with IMEC’s R&D expertise in RF technology."

Katrien Marent | alfa
Further information:
http://www.imec.be
http://www.imec.be/wwwinter/mediacenter/en/Renesas_2008.shtml

More articles from Power and Electrical Engineering:

nachricht New creepy, crawly search and rescue robot developed at Ben-Gurion U
19.07.2018 | American Associates, Ben-Gurion University of the Negev

nachricht The role of Sodium for the Enhancement of Solar Cells
17.07.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>