Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nuclear cannibals

06.03.2008
Nuclear power will feed on itself

Nuclear energy production must increase by more than 10 percent each year from 2010 to 2050 to meet all future energy demands and replace fossil fuels, but this is an unsustainable prospect.

According to a report published in Inderscience's International Journal of Nuclear Governance, Economy and Ecology such a large growth rate will require a major improvement in nuclear power efficiency otherwise each new power plant will simply cannibalize the energy produced by earlier nuclear power plants.

Physicist Joshua Pearce of Clarion University of Pennsylvania has attempted to balance the nuclear books and finds the bottom line simply does not add up. There are several problems that he says cannot be overcome if the nuclear power option is taken in preference to renewable energy sources.

For example, the energy input required from mining and processing uranium ore to its use in a power plant that costs huge amounts of energy to build and operate cannot be offset by power production in a high growth scenario. There are also growth limits set by the grade of uranium ore. "The limit of uranium ore grade to offset greenhouse gas emissions is significantly higher than the purely thermodynamic limit set by the energy payback time," he explains.

In addition, nuclear power produces a lot of heat as a byproduct and this directly heats the Earth. This is only a relatively small effect, but as energy consumption grows it must be taken into consideration when balancing the energy equation.

However, it is the whole-of-life cycle analysis that Pearce has investigated that shows nuclear power is far from the "emission-free panacea" claimed by many of its proponents. Each stage of the nuclear-fuel cycle including power plant construction, mining/milling uranium ores, fuel conversion, enrichment (or de-enrichment of nuclear weapons), fabrication, operation, decommissioning, and for short- and long-term waste disposal contribute to greenhouse gas emissions, he explains.

Nuclear may stack up against the rampant fossil-fuel combustion we see today, but only by a factor of 12. This means that if nuclear power were taken as the major option over the next forty years or so, we would be in no better a position in terms of emissions and reliance on a single major source of energy than we are today given the enormous growth nuclear required over that timescale.

Pearce's analysis is based on current practice in the United States with regard to the mining and enrichment of ore. He suggests that rather than abandoning nuclear power, efforts should be made to improve its efficiency considerably. First, we could start utilizing only the highest-concentration ores and switch to fuel enrichment based on gas centrifuge technology, which is much more energy-efficient than current gaseous diffusion methods.

Nuclear plants might be used as combined heat and power systems so the "waste" heat is used, rather than allowing them to vent huge quantities of heat to the environment at the end of the electricity generation cycle. Pearce also suggests that we could "down-blend" nuclear weapons stockpiles to produce nuclear power plant fuel.

Albert Ang | EurekAlert!
Further information:
http://www.inderscience.com

More articles from Power and Electrical Engineering:

nachricht Battery research at Graz University of Technology: new breakthroughs in research on super-batteries
25.04.2019 | Technische Universität Graz

nachricht Energy-saving new LED phosphor
24.04.2019 | Universität Innsbruck

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unprecedented insight into two-dimensional magnets using diamond quantum sensors

For the first time, physicists at the University of Basel have succeeded in measuring the magnetic properties of atomically thin van der Waals materials on the nanoscale. They used diamond quantum sensors to determine the strength of the magnetization of individual atomic layers of the material chromium triiodide. In addition, they found a long-sought explanation for the unusual magnetic properties of the material. The journal Science has published the findings.

The use of atomically thin, two-dimensional van der Waals materials promises innovations in numerous fields in science and technology. Scientists around the...

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...
All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Researchers discover surprising quantum effect in hard disk drive material

26.04.2019 | Physics and Astronomy

Hopkins researchers ID neurotransmitter that helps cancers progress

26.04.2019 | Life Sciences

Unprecedented insight into two-dimensional magnets using diamond quantum sensors

26.04.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>