Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Virtual’ reality check for superconductors

13.02.2008
Researchers at RIKEN’s Discovery Research Institute in Wako, in collaboration with researchers from Cornell University in the US, and Kyoto University, have refined a method that measures small electronic excitations in superconductors.

New clues important to our understanding of superconductivity are provided by precise measurements of electronic states

Researchers at RIKEN’s Discovery Research Institute in Wako, in collaboration with researchers from Cornell University in the US, and Kyoto University, have refined a method that measures small electronic excitations in superconductors. Comparisons of these properties for different materials have provided valuable clues towards our understanding of superconductivity.

The classical theory of superconductivity describes the superconducting state arising through the pairing of electrons into pairs. The properties of these electron pairs, however, are difficult to model mathematically. Physicists therefore prefer to describe them as a virtual single ‘quasiparticle’. “Although these quasiparticles are fictitious, they really govern the electronic states of superconductors, particularly at low energies,” explains Tetsuo Hanaguri from the research team.

Many details of the electronic states of quasiparticles and the precise amount of energy it takes to break up the electron pairs are difficult to measure, and remain poorly understood. This ‘break-up energy’, referred to as the ‘superconducting gap’, is traditionally considered as being directly related to the critical temperature where superconductivity persists. The larger the gap, the greater the difficultly to break up the electron pairs, thus the higher the critical temperature is for superconductivity. However, this relation has never been confirmed for the so-called ‘high-temperature’ superconductors, whose mechanism of superconductivity remains a mystery.

Reporting in the journal Nature Physics1, the RIKEN researchers have now measured the properties of the quasiparticles using a scanning tunneling microscope that scans the surface of a superconducting material with an atomic resolution and records tiny variations in the electronic structure. However, the observed periodic variations in the electronic properties are difficult to analyze as a number of effects contribute to these regular patterns. Therefore, Hanaguri and colleagues developed a novel mathematical technique to successfully pick out the quasiparticle signatures.

This mathematical technique allows the researchers to characterize several materials and compare their superconducting properties. Surprisingly, the relative variation in the superconducting gap was found to be the same for two different high-temperature superconductors, although their critical temperature differs by a factor of three. This shows that, contrary to conventional assumptions, the superconducting state is influenced by more than just the size of the superconducting gap.

To better understand the relation between superconducting gap and superconductivity, Hanaguri says that further measurements are needed to determine the effect of temperature and magnetic field on the quasiparticles. Ultimately, these measurements may provide vital clues on the fundamental mechanisms governing high-temperature superconductors.

1. Hanaguri, T., Kohsaka, Y., Davis, J. C., Lupien, C., Yamada, I., Azuma, M., Takano, M., Ohishi, K., Ono, M. & Takagi, H. Quasiparticle interference and superconducting gap in Ca2–xNaxCuO2Cl2. Nature Physics 3, 865–871 (2007).

Saeko Okada | ResearchSEA
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Turbomachine expander offers efficient, safe strategy for heating, cooling
25.02.2020 | Purdue University

nachricht New graphene-based metasurface capable of independent amplitude and phase control of light
20.02.2020 | The Korea Advanced Institute of Science and Technology (KAIST)

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Turbomachine expander offers efficient, safe strategy for heating, cooling

25.02.2020 | Power and Electrical Engineering

The seismicity of Mars

25.02.2020 | Earth Sciences

Cancer cachexia: Extracellular ligand helps to prevent muscle loss

25.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>