Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IMEC reports 3 analog to digital converters with record power efficiency

07.02.2008
International solid state circuit conference 2008 - San Francisco - California

At yesterday’s International Solid State Circuit Conference, IMEC presents three ultra-low-power analog to digital converters (ADC) with record figures of merit targeting wireless SDR, 60Ghz communication and sensor networks applications. IMEC has submitted patents for the architecture of its SAR (successive approximation), Flash and CABS (comparator-based asynchronous binary-search) ADC families, to make these available for product development for industry through licensing as white box IP. Future research of IMEC targets even faster ADCs with higher resolution at better power efficiency, to answer the need of future wireless communication products.

IMEC improves power efficiency of 7bit 150Msamples/s ADC with factor 22, with a new CABS ADC architecture IMEC developed a two-step 7bit 150MSamples/s ADC with a record figure of merit of 10fJ per conversion step. The innovative CABS ADC architecture consists of a 1bit coarse ADC and digital to analog converter followed by a 6bit sub-ADC. The 6bit sub-convertor consists of a self-clocked (asynchronous) binary tree of comparators with embedded threshold. The input signal is applied in parallel to all comparators as in the case of Flash converters, but only 6 comparators are triggered by the binary search conversion. The power consumption scales linearly with the sampling rate and equals 0.89µW per MHz clock rate resulting in a record figure of merit of 10fJ/conversion step. This is a factor 22 improvement compared to state-of-the-art ADCs with similar number of bits and sampling speed. The ADC was fabricated in 90nm digital CMOS, and occupies less than 250x250µm².

IMEC beats its own record SAR ADC with improved power efficiency and made it noise-robust IMEC realized a 9bit 40MSamples/s fully-dynamic noise-tolerant SAR ADC achieving a record figure of merit of 54fJ/conversion step. This figure of merit is a 16% improvement compared to IMEC’s last year’s record design presented at ISSCC. That ADC was the world-first charged-based SAR ADC which uses charge-domain signal processing to overcome the fundamental power bottlenecks in successive approximation ADCs. The new design is optimized with an improved sample-and-hold and a noise-robust approach by leveraging redundancy in the search algorithm.The ADC was fabricated in 90nm digital CMOS and occupies less than 220x410µm². Measurements on silicon show a DNL and INL of respectively 0.7/-0.45 and 0.56/-0.65 LSB.

IMEC achieves 3 times better figure of merit for Flash ADC with sampling speed above 500MSamples/s IMEC realized a 5bit 1.75Gsamples/s folding Flash ADC in 90nm digital CMOS with a record figure of merit of 50fJ per conversion step. This is 3 times better compared to the best ever reported converters with sampling speeds over 500Msamples/s.

Flash ADCs are typically used for high-speed applications. In this design, the fundamental power and area limits of Flash ADCs are overcome by using a factor 2 folding technique with only dynamic power consumption and without using amplifiers. In this way, the number of comparators could be reduced from 31 to 16 for a 5 bit resolution.

This folding Flash ADC was fabricated in 90nm digital CMOS, and occupies less than 110x150µm². Measurements at 1.75GSamples/s with a LSB (least significant bit) size of 25mV show an INL (integral non-linearity) and DNL (differential non-linearity) between -0.28/+0.24 and -0.29/+0.26 LSB respectively.

Katrien Marent | alfa
Further information:
http://www.imec.be/wwwinter/mediacenter/en/Power_2008.shtml

More articles from Power and Electrical Engineering:

nachricht Hope for silicon solar cells with significantly improved efficiency: New synthesis route to soluble silicon clusters
15.11.2019 | Technische Universität München

nachricht New laser opens up large, underused region of the electromagnetic spectrum
14.11.2019 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

Observing changes in the chirality of molecules in real time

15.11.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>