Solar cells of the future

If researcher Martin Aagesen’s future solar cells meet the expectations, both your economy and the environment will benefit from the research. Less than 1 per cent of the world’s electricity comes from the sun because it is difficult to transform solar energy to electricity. But Martin Aagesen’s discovery may be a huge step towards boosting the exploitation of solar energy.

– We believe that the nano flakes have the potential to convert up to 30 per cent of the solar energy into electricity and that is twice the amount that we convert today, says Martin Aagesen who is a PhD from the Nano-Science Center and the Niels Bohr Institute at University of Copenhagen. During his work on his PhD thesis, Martin found a new and untried material.

– I discovered a perfect crystalline structure. That is a very rare sight. While being a perfect crystalline structure we could see that it also absorbed all light. It could become the perfect solar cell, says Martin Aagesen. The discovery of the new material has sparked a lot of attention internationally and has led to an article in Nature Nanotechnology.

– The potential is unmistakeable. We can reduce the solar cell production costs because we use less of the expensive semiconducting silicium in the process due to the use of nanotechnology. At the same time, the future solar cells will exploit the solar energy better as the distance of energy transportation in the solar cell will be shorter and thus lessen the loss of energy, says Martin Aagesen who is also director of the company SunFlake Inc. that pursues development of the new solar cell.

Media Contact

Rikke Bøyesen EurekAlert!

More Information:

http://www.nano.ku.dk

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors