Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rensselaer Researchers to Develop and Test Next-Generation Radar Systems

05.10.2009
Researchers at Rensselaer Polytechnic Institute have received a grant for $792,000 from the U.S. Air Force to create a new laboratory for developing and testing next-generation radar systems that overcome one of the key limitations of conventional radars.

The new test bed, led by Birsen Yazici, associate professor of electrical, computer, and systems engineering, will allow simulations of radar systems that are comprised of hundreds of miniature sensors communicating with ground sensors, unpiloted aerial vehicles, and satellites. Such a system could allow radars to be used in crowded cities and other urban environments.

“Conventional radar systems are designed for open spaces, and they do not work very well when used in urban environments with clutter from power lines, buildings, and dynamically changing elements like vehicles and people,” Yazici said. “Active distributed and layered sensing, which is what we are doing, offers a whole new paradigm that addresses these challenges. The new test bed will be a huge step toward making these theoretical systems a reality.”

The grant was awarded by the U.S. Air Force Office of Scientific Research. Margaret Cheney, professor of mathematics at Rensselaer, and Kenneth Connor, professor of electrical, computer, and systems engineering at Rensselaer, are co-investigators on the project.

Radar plays an important role in transportation, communications, and other applications because radio waves can pass through clouds, smoke, and other obstructions that often limit visibility, Yazici said. However, the usefulness of radar in cities and urban environments is quite limited due to their dynamically changing nature, as well as radio signal echoing. Just as echoes can make auditorium speakers difficult to understand, radar gets muddled when there are extra signals bouncing off different objects in an area.

Yazici and her colleagues have worked for some time to develop theoretical models in which conventional radar systems are replaced or augmented by many small, inexpensive radio frequency (RF) sensors that are stationary or deployed on air, space, or ground vehicles. These swarms of RF sensors communicate and share data and instructions in real-time, have access to established data networks and databases, and are programmed to autonomously adapt to changing environments and goals.

To simulate such a system, the new test bed will position antennas in a large cylindrical chamber. The antennas will transmit and receive test signals, resulting in an extensive collection of data that is equivalent to that obtained with hundreds of small RF sensors. The 25-foot diameter chamber will be situated in Rensselaer’s Watervliet research facility.

The capabilities of the test bed will include developing accurate and simple wave propagation models for complex environments; performing experiments with waveform, polarization, and 3-D spatial diversity and time-reversal methodology; as well as testing and evaluating new capabilities in opportunistic sensing, passive imaging, wide-aperture imaging, integrated sensing and processing, and moving target imaging.

Yazici said the new test bed will also promote the transfer and exchange of ideas and capabilities with federal laboratories, serve as a shared facility for Rensselaer and the Air Force Research Laboratory, and facilitate interdisciplinary and multi-university research in sensing, medical imaging, networking, robotics, advanced antennas, and control of stray RF energy from power systems. It will also be used for education, outreach, and training activities involving radar and other RF technologies.

For more information on the new the RF test bed visit: http://hibp.ecse.rpi.edu/~connor/RF/Tomography/Testbed.html

Michael Mullaney | Newswise Science News
Further information:
http://www.rpi.edu
http://hibp.ecse.rpi.edu/~connor/RF/Tomography/Testbed.html

More articles from Power and Electrical Engineering:

nachricht IHP technology ready for space flights
20.08.2018 | IHP - Leibniz-Institut für innovative Mikroelektronik

nachricht It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries
20.08.2018 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>