Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rain Or Shine, Researchers Find New Ways to Forecast Large Photovoltaic Power Plant Output

30.09.2010
Sandia National Laboratories researchers have developed a new system to monitor how clouds affect large-scale solar photovoltaic (PV) power plants.

By observing cloud shape, size and movement, the system provides a way for utility companies to predict and prepare for fluctuations in power output due to changes in weather. The resulting models will provide utility companies with valuable data to assess potential power plant locations, ramp rates and power output.

Sandia researchers’ work is currently focused at the 1.2-megawatt La Ola Solar Farm on the Hawaiian island of Lana’i. La Ola is the state’s largest solar power system, and can produce enough power to supply up to 30 percent of the island’s peak electric demand, which is one of the highest rates of solar PV power penetration in the world. Understanding variability of such a large plant is critical to ensuring that power output is reliable and that output ramp rates remain manageable.

“As solar power continues to develop and take up a larger percentage of grids nationwide, being able to forecast power production is going to become more and more critical,” said Chris Lovvorn, director of alternative energy of Castle & Cooke Resorts, LLC, which owns 98 percent of the island. “Sandia’s involvement and insight has been invaluable in our efforts to meet 100 percent of the island’s energy needs with renewable resources.”

The effects of clouds on small PV arrays are well-documented, but there is little research on how large-scale arrays interact and function under cloud cover. A small system can be completely covered by a cloud, which drastically reduces its power output, but what’s less well understood is what happens when only part of a large system is covered by a moving cloud shadow, while the rest stays in sunlight.

“Our goal is to get to the point where we can predict what’s going to happen at larger scale plants as they go toward hundreds of megawatts. To do that, you need the data, and the opportunity was available at La Ola,” said Sandia researcher Scott Kuszmaul.

The high penetration of PV power on Lana’i, combined with the sun and cloud mix at the 10-acre La Ola plant, provides an optimal environment for prediction and modeling research. Research could not interfere with the ongoing operations of the plant, which currently sells power to Maui Electric Company (MECO), so Sandia engineers connected 24 small, nonintrusive sensors to the plant’s PV panels and used a radio frequency network to transmit data. The sensors took readings at one-second intervals to provide researchers with unprecedented detail about cloud direction and coverage activity.

A radio frequency transmission system has the added benefit of being portable. “Currently, a utility company that wants to build a large solar PV power plant might have a lot of questions about the plant’s output and variability at a proposed site. Work being done at the La Ola plant is leading to new methods that eventually can be used to answer these questions,” said Sandia researcher Josh Stein. “These techniques will allow a developer to place a sensor network at a proposed site, make measurements for a period of time and use that to predict plant output variability.”

La Ola was commissioned in December 2008 by Castle & Cooke Resorts, LLC, and SunPower Corp., a manufacturer of high-efficiency solar cells. The project uses SunPower’s Tracker technology. Panels rotate on a single axis to follow the sun, which increases energy capture by up to 25 percent. Since February, Sandia Labs has held a cooperative research and development agreement (CRADA) with SunPower to conduct research on integrating large-scale PV systems into the grid. The CRADA is funded with about $1 million of combined U.S. Department of Energy and SunPower funding and is expected to achieve significant results, which will be disseminated through joint publications over the next two years.

For more information about Sandia’s photovoltaic work, please visit: www.sandia.gov/pv.

Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Sandia news media contact: Stephanie Hobby, shobby@sandia.gov, (505) 844-0948

Stephanie Hobby | Newswise Science News
Further information:
http://www.sandia.gov

More articles from Power and Electrical Engineering:

nachricht Scientists create biodegradable, paper-based biobatteries
08.08.2018 | Binghamton University

nachricht Ricocheting radio waves monitor the tiniest movements in a room
07.08.2018 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Breaking down the Wiedemann-Franz law

13.08.2018 | Physics and Astronomy

Joining forces for immune research

13.08.2018 | Life Sciences

Another step forward on universal quantum computer

13.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>