Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Green" OLED-Displays - High Image Quality at Low Energy

14.10.2009
Chihao Xu, professor for microelectronics at Saarland-University, has achieved a breakthrough in power-efficient driving of OLED-displays.

They are regarded as displays of the future - organic light emitting diode-displays - called OLED-displays in short. This technology is already applied in mobile phones, MP3-players and digital cameras.

It is based on the phenomenon that certain organic materials emit light, when fed by an electric current. The new OLED-displays can be thin as a film and just as flexible. Furthermore they have a wide viewing angle and display videos perfectly. A further benefit is that these displays need little energy.

"Compared to the present standard, more than the half of the energy can be saved for the OLED-display-operation", Chihao Xu stated. "Especially for mobile applications, saving of energy is reasonable" explains the professor. The display consumes most of the energy in mobile devices such as the mobile phone. Especially by charging and discharging a lot of energy gets lost". The scientists from Saarbrücken are searching for avoiding this high power loss.

This shall be achieved by the new driving scheme SQC (State dependent Charge controlled Driving) for actuating passive matrix OLED-displays. This scheme will substantially reduce the power consumption especially for high resolution displays, and will naturally guarantee the known excellent image quality of an OLED-display.

The microelectronics group of Saarland University is worldwide leading in the field of the OLED-driving. Within the CARO-project (CAR OLED) Chihao Xu and his team together with partners from science and industry, such as Optrex Europe GmbH and the Fraunhofer Institute for Photonic Microsystems (PIMS), participated in the development of a new driver chip, which shall be implemented in OLED-displays for cars. In this project, a new multi-line addressing scheme ("SELA", Summed Equi-Line-Addressing) is used. This method significantly increases the lifetime of OLEDs and makes them more attractive for high performance applications.

"OLEDs have many advantages, particularly in cars. The displays react immediately also at very low temperatures. Besides, dark pixels are really black and differ only slightly from the surroundings in the cockpit. This leads to an appearance more beautiful and more splendid", explains Chihao Xu. The driver chip from the CARO-project, realized by the Fraunhofer IPMS, is designed in such a versatile manner that also SQC can be implemented.

"Also with regard to cars, saving of energy is an important matter" says professor Xu. "Therefore it is consequent to research on the combination of this power-efficient driving scheme and the Summed-Equi-Line-Addressing and to develop a marketable demonstrator".

Now, the microelectronics group of Saarbrücken will together with Optrex Europe GmbH and further partners continue to push on the efficient control of passive matrix-OLED-displays, so that they can gain more interest especially in high-grade applications, like e.g. in cars.

The research association with the name CARO is one of the research associations, which is promoted within the scope of the initiative "OLED 2015" (phase 1), set up by the German Ministry for Education and Research in 2006. The participating CARO-partners thank the ministry for the financial assistance of the individual projects with the project codes 01BD 0680-0688; the project will expire in autumn.

For further information please contact:

Prof. Dr. Chihao Xu
Phone: +49 681/302-4305
chihao.xu@lme.uni-saarland.de
Universität des Saarlandes
Lehrstuhl für Mikroelektronik
Campus
66123 Saarbrücken
Dr. Jürgen Wahl
Phone: +49 6073 721 200
Juergen.Wahl@Optrex.de
Optrex Europe GmbH
Seligenstädter Str. 40
64832 Babenhausen
Ines Schedwill
Phone: +49 351 8823-238
info@ipms.fraunhofer.de
Fraunhofer-Institut für Photonische Mikrosysteme
Maria-Reiche-Str. 2
01109 Dresden

Irina Urig | idw
Further information:
http://www.lme.uni-saarland.de
http://www.optrex.de
http://www.ipms.fraunhofer.de

Further reports about: CARO-project OLED OLED-Display Optrex SQC digital camera organic material

More articles from Power and Electrical Engineering:

nachricht Energy-efficient spin current can be controlled by magnetic field and temperature
17.08.2018 | Johannes Gutenberg-Universität Mainz

nachricht Scientists create biodegradable, paper-based biobatteries
08.08.2018 | Binghamton University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Quantum material is promising 'ion conductor' for research, new technologies

17.08.2018 | Materials Sciences

Low bandwidth? Use more colors at once

17.08.2018 | Information Technology

Protecting the power grid: Advanced plasma switch for more efficient transmission

17.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>