Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Putting sunshine in the tank

05.07.2011
Working with the Universities of East Anglia, York and Nottingham and using nanotechnology 100,000 times smaller than the thickness of a human hair, the researchers are working on harnessing the vast energy of the Sun to produce clean fuel.

The scientists are presenting their research at the Royal Society's annual Summer Science Exhibition which opens today [5 July 2011].

Members of the consortium at UEA have already found a way to produce hydrogen from water. A revolutionary future use of this technology could be to make the fuel for hydrogen-powered cars, rather than making it from fossil fuel.

Now the scientists are aiming to use the same technology to create alternatives for other fuels and feedstock chemicals, including turning methane into liquid methanol and carbon dioxide into carbon monoxide.

The sun's potential is vast – just one hour of sunlight is equivalent to the amount of energy used over the world in an entire year – yet no one has yet tapped into its immense power to make fuels.

Professor Wendy Flavell, from The University of Manchester's Photon Science Institute, and her colleagues are working to create a solar-nano device using 'quantum dots' – tiny clusters of semiconducting material which absorb sunlight.

When sunlight is absorbed, carriers of electric current are created. Together with catalyst molecules grafted to the surfaces of the dots, these create the new fuel – for example hydrogen can be produced from water. Professor Flavell said: "Our sun provides far more energy than we will ever need, but we use it really inefficiently.

"To make better use of the fantastic resource we have in our Sun, we need to find out how to create solar fuel that can be stored and shipped to where it is needed and used on demand.

"Most hydrogen so far is obtained from fossil fuels, which are of course not going to last for ever, so it is important to get energy from renewable sources."One of the key questions is: 'what do we do when the sun goes down, what happens at night?' If we can store the energy harnessed from the sun during the day then we will have supplies ready to use when the sun is not shining.

"This is a first step in taking the vast power of the sun and using it to provide the world's fuel needs."

At the exhibition, Professor Flavell and her team will be displaying an interactive world map which will show children and other visitors just how much energy the Sun provides.

There will also be a chance to see the quantum dots at work, and show how, simply by changing the size of the dots, the colour of light they absorb or give out can be changed.

A solar cell that produces hydrogen directly from the electricity generated will also be on display and there will be a chance to race solar-powered and hydrogen-powered model racing cars.

Professor Chris Pickett of the University of East Anglia said "Creating catalytic devices which harvest light energy using quantum dots, or photovoltaic materials to drive the formation of synthetic fuels from water or carbon dioxide can be viewed as artificial photosynthesis.

"Globally, chemists, physicists and materials scientists are coming together to work on artificial photosynthesis to get to a stage where we can viably make clean, green fuels"

Professor Robin Perutz of the University of York said:"This is the most challenging scientific project I have ever been involved in, but it will be the most rewarding if we can bring it off. It's no use sitting back and hoping that someone else will work out how to harness the Sun's energy. This technology could revolutionise our energy usage in the coming decades."

Daniel Cochlin | EurekAlert!
Further information:
http://www.manchester.ac.uk

Further reports about: Anglia East Flavell Putting Science TV Sun artificial photosynthesis carbon dioxide quantum dot

More articles from Power and Electrical Engineering:

nachricht Patented nanostructure for solar cells: Rough optics, smooth surface
18.09.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht With Gallium Nitride for a Powerful 5G Cellular Network - EU project “5G GaN2” started
17.09.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells

21.09.2018 | Life Sciences

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>