Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Printed Photonic Crystal Mirrors Shrink On-Chip Lasers Down to Size

24.07.2012
Electrical engineers at The University of Texas at Arlington and at the University of Wisconsin-Madison have devised a new laser for on-chip optical connections that could give computers a huge boost in speed and energy efficiency.

The team published its findings on July 22, 2012 in Nature Photonics.

At just 2 micrometers in height – smaller than the width of a human hair – the surface-emitting laser's vastly lower profile could make it cheaper and easier for manufacturers to integrate high-speed optical data connections into the microprocessors powering the next generation of computers.

Traditionally, edge-emitter lasers are considered as the candidate for on-chip optical links. But since mirrors are hard to form in such lasers and because the lasers occupy a large chip area, researchers have been challenged to find a practical way to monolithically integrate the mirrors on silicon chips.

Surface-emitting lasers necessary for a high-speed optical links between computer cores could be 20 to 30 micrometers tall, slightly bigger than one hole in the mesh of a car’s oil filter. Yet the research team’s engineers say that on a 1.5-micrometer wavelength optically connected chip, lasers of that size dwarf their silicon surroundings.

"It sits tall on the chip, like a tower,” says Zhenqiang Ma, a UW-Madison professor of electrical and computer engineering. “That is definitely not acceptable."

Weidong Zhou, a UT Arlington professor of electrical engineering, says one challenge was integrating light into silicon chips, as silicon itself is not an efficient light emitter.

Zhou and Ma have collaborated to shrink on-chip lasers in recent years with funding from the U.S. Air Force Office of Scientific Research, Army Research Office and Defense Advanced Research Projects Agency.

As a solution, the researchers propose replacing layers and layers of reflectors necessary in the traditional distributed Bragg reflector laser design with two highly reflective photonic crystal mirrors. Composed of compound semiconductor quantum well materials, each mirror is held in place with silicon nanomembranes, extremely thin layers of a silicon.

Zhou says integrating compound semiconductor quantum wells with silicon is a promising approach. “We apply a nanomembrane transfer printing process to accomplish this goal,” he says.

One layer of photonic crystal is equal to about 15 to 30 layers of dielectric reflectors found in conventional lasers. As a result, manufacturers could fabricate 2-micrometer-high lasers for data links with performance that could equal current designs.

In addition to their larger size, reflectors for conventional lasers are made of materials grown only at very high temperatures, which means they can damage the chip they are placed upon during production. Since fabrication via transfer printing can occur at much lower temperatures, Zhou and Ma hope their laser design can be used to place optical links on silicon chips with much less wasted material, time and effort.

Optical data links already exist at the largest scales of data networks – the Internet’s backbone is composed mainly of fiber-optic links between countries, cities and houses. But currently, that data moves over to slower metal connections and wiring as it travels from a regional hub to your house, your computer and eventually between the CPU cores within of the processor powering your machine.

“In the future, you'll see a move to optical at each step,” Ma says. “The last step is within the chip, module to module optical links on the chip itself.”

Through Semerane Inc., the Texas-based startup Zhou and Ma founded, the two hope to implement their production process in functional on-chip photonic crystal membrane lasers that could eventually be part of the next generation high-speed computer processors.

“We believe this laser will be used to make data links more practically available,” Ma says.

“It is truly an interdisciplinary team effort,” Zhou says. “The co-existence of photonics with electronics on the chip level shall enable multi-functional energy-efficient super-chips for applications in computing, communications, sensing, imaging and so on.”

With widespread adoption of processors that use their laser design for optical links, Ma and Zhou could have a hand in increasing the speed along the local leg of the information superhighway.

“Eventually, a CPU core in America could be connected to another CPU core in Asia, with optical connections all along the chain,” Ma says.

Read the full paper here: http://dx.doi.org/

—Mark Riechers, mriechers@engr.wisc.edu, 608-265-8592
—Herb Booth, hbooth@uta.edu, 817-272-7075

Zhenqiang (Jack) Ma | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Power and Electrical Engineering:

nachricht Materials that can revolutionize how light is harnessed for solar energy
20.08.2019 | Columbia University

nachricht A miniature stretchable pump for the next generation of soft robots
15.08.2019 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

All-in-one: New microbe degrades oil to gas

20.08.2019 | Life Sciences

Spinning lightwaves on a one-way street

20.08.2019 | Physics and Astronomy

Materials that can revolutionize how light is harnessed for solar energy

20.08.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>