Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Printed Electronics: A Multi-Touch Sensor Customizable with Scissors

08.10.2013
If a pair of trousers is too long, it is cut shorter. A board that does not fit into a bookcase is sawed to the right length.

People often customize the size and shape of materials like textiles and wood without turning to specialists like tailors or carpenters. In the future this should be possible with electronics, according to the vision of computer scientists from Saarbrücken.


By customizing and pasting the new sensor you can make every surface interactive.
Saarland University

Together with researchers from the MIT Media Lab, they developed a printable multi-touch sensor whose shape and size everybody can alter. A new circuit layout makes it robust against cuts, damage, and removed areas.

Today the researchers are presenting their work at the conference “User Interface and Technology” (UIST) in St. Andrews, Scotland.

“Imagine a kid takes our sensor film and cuts out a flower with stem and leaves. If you touch the blossom with a finger, you hear the buzzing of a bumblebee”, Jürgen Steimle says. He reports that programs and apps are easily imaginable to help parents connect touching a sensor film with the suitable sound effect. Steimle, 33, has a doctoral degree in computer science and is doing research at the Max-Planck Institute for Informatics. He also heads the Embodied Interaction research group at the Cluster of Excellence on Multimodal Computing and Interaction.

Simon Olberding is the doctoral candidate and the lead developer of the new sensor. He sees a further application of the new technology in so-called interactive walls used for discussions and brainstorming. “So far, such a wall frays and scuffs quickly as we hammer nails into it, stick notes or posters on it, and damage it while removing them. By customizing and pasting on our new sensor you can make every surface interactive no matter if it is the wristband of a watch, a cloth on a trade fair table, or wallpaper”, Olberding says.

As basic technology the scientists use so-called “printed electronics”. This term summarizes electrical components and devices which are printed. The approach is similar to that of inkjet printers. Instead of printing with normal ink, electrically-functional electronic ink is printed on flexible, thin films (so-called substrates). “The factory costs are so low that printing our DIN A4 film on our special printer in the lab costs us about one US dollar”, Steimle says.

But you need more than printed electronics to make a sensor robust against cuts, damage, and removed areas. So far the circuit layout of a multi-touch sensor has been similar to graph paper. The wires run horizontally, vertically, and parallel to each other. At the intersection of one parallel and one horizontal layer you find the touch-sensitive electrodes. Via the wires they are connected to a controller. This type of layout requires only a minimal number of wires, but is not robust. Since each wire addresses several electrodes, a small cut has a huge effect: many electrodes become unusable and possibly large sensor areas do not work anymore. “It was not easy to find an alternative layout, robust enough for our approach”, Olberding says. They took their inspiration from nature, looking at the human nerve system and fungal root networks, and thus came up with two basic layouts. The so-called star topology has the controller in the center. It is connected to every electrode separately. The so-called tree topology also has the controller in its center connected to each electrode separately. But the wires are bundled similarly to a tree structure. They all run through a vertical line in the middle and then branch off to reach their electrodes.

The scientists found out that the star topology supports often-used basic forms like triangles, rectangles, or ovals best. Furthermore, it is suitable for shapes commonly used for crafts, like stars, clouds, or hearts. In contrast, with the tree topology it is possible to cut out whole areas. The researchers were also able to combine both layouts in a space-saving way, so that the sensor supports all basic forms.

“We assume that printed sensors will be so inexpensive that multi-touch sensing capability will become an inherent part of the material. Users can take it to create interactive applications or just to write on it”, Steimle explains. This vision is not so far away, as a prediction from the “Organic and Printed Electronic Association” shows. The international industry association forecast that flexible consumer electronics will be available for end-users between the years 2017 and 2020.

Further information:

Project:
http://embodied.mpi-inf.mpg.de/research/cuttable-multi-touch-sensor/
Publication:
Simon Olberding, Nan-Wei Gong, John Tiab, Joseph A. Paradiso and Jürgen Steimle. A Cuttable Multi-touch Sensor. In Proc. UIST 2013 (Full Paper). http://embodied.mpi-inf.mpg.de/files/2012/11/ACuttableMultiTouchSensor.pdf
Video:
http://www.youtube.com/watch?v=wnTG_ZTYdVk
Figure:
www.uni-saarland.de/pressefotos
Further questions are answered by:
Dr. Jürgen Steimle
Max Planck Institute for Informatics
Email: jsteimle@mpi-inf.mpg.de
Simon Olberding
Max Planck Institute for Informatics
Email: solberdi@mpi-inf.mpg.de
Editor:
Gordon Bolduan
Science Communication
Competence Center of Computer Science Saarland
Email: bolduan@mmci.uni-saarland.de
Tel: +49 681 302 70741

Friederike Meyer zu Tittingdorf | idw
Further information:
http://www.uni-saarland.de

More articles from Power and Electrical Engineering:

nachricht A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes
20.07.2018 | Science China Press

nachricht Future electronic components to be printed like newspapers
20.07.2018 | Purdue University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>