Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Power Supply Systems for Deep Sea Factories

15.11.2013
Siemens is developing power technology for deep sea factories. These self-sufficient oil and gas extraction facilities should one day exploit raw material deposits on the seafloor.

Located thousands of meters under water, the factories must operate reliably for several decades. However, there is still no empirical data about the high water pressure's long-term effects on transformers and other network components.



As reported in "Pictures of the Future", Siemens is testing components for deep sea facilities in a special pressure chamber in Trondheim, Norway. Beginning in 2020, the Norwegian energy company Statoil plans to build oil and gas extraction facilities deep under water.

Subsea facilities are currently only set up in relatively shallow waters. In these systems, power cables and pipes connect pumps that are distributed across the seafloor to a floating platform. This technology can be used to extract about 40 percent of a raw material reservoir. However, self-sufficient deep sea factories could increase the rate to 60 percent.

These factories pump oil or gas directly out of the wells and compress the gas before transporting it to the surface. The facilities' power supply units (transformers, frequency converters, and switchgear) are also under water, where they provide the correct voltage. As a result, they can supply power to more pumps than surface systems. The only connections between the deep sea and the surface are a pipeline and an electricity and data cable.

The Siemens research center near Trondheim is ensuring the reliability of the deep sea power network by putting the components into a pressure chamber, where they have to withstand up to 460 bars for several months. This pressure is equivalent to the pressure found 4,600 meters under water. The researchers put the individual components into oil-filled pipes that are then placed inside the pressure chamber. The completed facilities will also be filled with oil instead of being installed into conventional air-filled housings.

The oil offsets the high pressure and has better cooling and electrical insulation properties than air, allowing the deep sea facilities to be more compact than would otherwise be the case. Special aging tests ensure that the parts will last for at least 20 years. Only components that pass all of the tests and the subsequent inspection are installed into the electricity network components.

Siemens has already assembled the first deep sea transformer in Trondheim. A switchgear system will be completed by the end of the year, and a frequency converter is scheduled to be finished by the end of 2014.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

More articles from Power and Electrical Engineering:

nachricht Agricultural insecticide contamination threatens U.S. surface water integrity at the national scale
06.12.2018 | Universität Koblenz-Landau

nachricht Improving hydropower through long-range drought forecasts
06.12.2018 | Schweizerischer Nationalfonds SNF

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>