Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PolyU develops novel efficient and low-cost semitransparent perovskite solar cells with graphene electrodes

09.09.2015

The new technology has power conversion efficiencies of around 12% when they are illuminated from fluorine-doped tin oxide bottom electrodes or the graphene top electrodes, compared with 7% of conventional semitransparent solar cells.

Developing transparent or semitransparent solar cells with high efficiency and low cost to replace the existing opaque and expensive silicon-based solar panels has become increasingly important due to the increasing demands of the building integrated photovoltaics (BIPVs) systems. The Department of Applied Physics of The Hong Kong Polytechnic University (PolyU) has successfully developed efficient and low-cost semitransparent perovskite solar cells with graphene electrodes.


Copyright : HK PolyU

The power conversion efficiencies (PCEs) of this novel invention are around 12% when they are illuminated from Fluorine-doped Tin Oxide bottom electrodes (FTO) or the graphene top electrodes, compared with 7% of conventional semitransparent solar cells. Its potential low cost of less than HK$0.5/Watt, more than 50% reduction compared with the existing cost of Silicon solar cells, will enable it to be widely used in the future.

Solar energy is an important source of renewable energy, in which solar cell will be used to convert light energy directly into electricity by photovoltaic effect. The first generation crystalline silicon solar panel is highly stable with efficient energy conversion, but opaque and expensive. The second generation solar cell, namely thin film solar cell, is light in weight and can be made flexible.

However, they are made of rare materials with complicated structure and need high temperature treatments. With the research objectives of producing solar panels of high PCEs, easy fabrication, and low cost, in recent years, scientists have been investigating third generation solar cells. Perovskite solar cell as a novel third generation solar cell has attracted much attention recently due to its high power conversion efficiency, convenient fabrication process and potentially low cost.

With the aim of improving PCEs and reducing costs of semitransparent solar panels, PolyU researcher has developed the first-ever made semitransparent perovskite solar cells with graphene as electrode. Graphene is an ideal candidate for transparent electrodes in solar cells with high transparency, good conductivity and potentially low cost. The semitransparent feature of the solar cell enables it to absorb light from both sides, and can be widely used in windows, facades, louvers and rooftops of buildings for converting solar energy into electricity, thus increasing the surface area for collecting solar energy substantially.

While graphene as an advanced material was invented more than 10 years ago, PolyU innovated simple processing techniques for enhancing the conductivity of graphene to meet the requirement of its applications in solar cells. Firstly, the conductivity of graphene was dramatically improved by coating a thin layer of conductive polymer poly-(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS), that was also used as an adhesion layer to the perovskite active layer during the lamination process.

Secondly, to further improve the efficiency of power conversion, PolyU researcher found that by fabricating the solar cell with multilayer chemical vapor deposition graphene as top transparent electrodes, the sheet resistance of the electrode could be further reduced while maintaining the high transparency of the electrodes. Lastly, the performance of this novel invention is further optimized by improving the contact between the top graphene electrodes and the hole transport layer (spiro-OMeTAD) on the perovskite films.

Because of the excellent mechanical flexibility of graphene and the convenient preparation of the devices, PolyU's invention can be used for the mass production of the semitransparent perovskite solar cells with printing or roll to roll process. The semitransparent solar cells will fill the gap in the market which is not achievable by the existing solar cells dominating the market.

Study findings have been published in Advanced Materials, a leading journal in material science.


Press Contacts

Dr. YAN Feng
Associate Professor, Department of Applied Physics
Phone: (852) 2766 4054
Email : feng.yan@polyu.edu.hk

Associated links
Original press release from HK PolyU

The Hong Kong Polytechnic University | ResearchSea
Further information:
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht The role of Sodium for the Enhancement of Solar Cells
17.07.2018 | Max-Planck-Institut für Eisenforschung GmbH

nachricht Behavior-influencing policies are critical for mass market success of low carbon vehicles
17.07.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>