Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant Optimisation Saves Energy

12.11.2010
• Heating processes use energy
• Heraeus Noblelight optimises existing plant

Can the coating dry more quickly? Is it possible to reduce the rejection rate? Does the plant use too much energy?


Dr Larisa von Riewel and Joerg Woell of the Consulting Team can often best identify optimisation opportunities for heating process directly on plant.
Copyright Heraeus Noblelight 2010


Radiation intensity is computed with Ray Tracing.
Copyright Heraeus Noblelight 2010

Many companies ask themselves questions like these. Energy and material costs are important considerations for industrial companies who wish to maintain or improve their competitiveness. At the same time, the optimisation of existing plant can often be the more sensible and cost-effective option over installing new plant. A newly established consulting team at Heraeus Noblelight now offers support through individual consultancy, practical planning and prompt implementation of measures to achieve optimisation of plant, equipment and processes.

A drying oven is often the bottleneck in a production line. In order to increase production output, a convection oven can, for example, be extended – but this is not possible in every factory. It is more efficient to replace the hot air with infrared heating or to use a combination of the two technologies, which can generally lead to savings in space and energy. However, the best way is to examine the complete system. “Recently, we have carried out detailed investigations of their system technology for one of our customers using Time-Distance diagrams,” explains Joerg Woell from the new consulting division at Heraeus Noblelight.

“In doing so, we could see immediately that a conversion of the drying process would make sense.” This showed that by using fast-acting carbon infrared emitters, with electronic linking to the conveyor system, there is an optimisation of the operating life and significant energy saving. Precise calculations showed that following the conversion only 460 kW of power was required compared with the previous 880 kW.

To carry out such calculations, the new Heraeus division also used modern numerical methods such as Ray Tracing and Computational Fluid Dynamic, in addition to the usual tests in the Application Centre and the information contained in the data banks built up over years.

Identifying and Implementing Optimisation Opportunities

The new consulting team provides consultancy and advice, planning and implementation of economical energy efficiency measures. In accordance with VDI 3922, Heraeus investigates production plants for potential improvements, using a practical approach which is independent of equipment manufacturers. Tests have been carried out for many years to analyse heating processes in our in-house Application Centre and on site. Experimental data in our databases, built up over decades, has also been useful for first assessments. Now we have added modern numerical techniques. Ray Tracing and Computational Fluid Dynamics are very valuable methods, for example, for optimising the homogeneity of heating on surfaces or minimising edge zone losses.

The use of modern infrared technology together with defined process optimisation increases the degree of utilisation of the production plant. It is important to understand the heating process precisely so that infrared heat can be used “on demand”. For example, if emitters are switched on only when a product to be heated actually requires heat, then energy is saved, operating life is optimised and efficiency is increased significantly.

“In the aforementioned case, we could not only achieve 60% energy savings but also a reduction in rework rate,” enthused Joerg Woell. The measures established are evaluated in terms of economic viability to illustrate the possible energy-saving and production opportunities.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China, Australia and Puerto Rico, is one of the technology and market leaders in the production of specialty light sources. In 2009, Heraeus Noblelight had an annual turnover of 71.6 Million € and employed 707 people worldwide. The organisation develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical laboratories.

Heraeus, the precious metals and technology group headquartered in Hanau, Germany, is a global, private company with over 155 years of tradition. Our businesses include precious metals, sensors, biomaterials and medical products, dental products, quartz glass, and specialty light sources. With product revenues of € 2.6 billion and precious metal trading revenues of € 13.6 billion, as well as more than 12,300 employees in over 110 subsidiaries worldwide, Heraeus holds a leading position in its global markets.

Further Information:

Readers:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
Phone +49 6181/35-8545, Fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com
Press:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
Abteilung Marketing/Werbung
Phone +49 6181/35-8547, Fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.heraeus-noblelight.com

More articles from Power and Electrical Engineering:

nachricht A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes
20.07.2018 | Science China Press

nachricht Future electronic components to be printed like newspapers
20.07.2018 | Purdue University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>