Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photovoltaic systems that adapt to the climate – subject of Austrian lead project research

03.12.2015

In Infinity, an Austrian lead project, researchers are working on a new generation of photovoltaic Systems. Its aim is to adapt the entire photovoltaic system, including the materials, components and processes involved, to the requirements in different climates and regions. The project unites leading partners in science and industry.

Technology minister Alois Stöger: “Research and development is an important strategic factor in expanding renewable energies and achieving global climate protection goals. As effective climate policy needs innovative energy technologies, Austrian solar expertise is in demand on the global market. We therefore trust the Infinity project will continue to expand this strong position.”


The objective of the Infinity research project is to use photovoltaics efficiently in different climate zones.

Fronius International


Five partners in science and nine partners in industry are participating in the Austrian photovoltaics lead project.

CTR

The demand for photovoltaic (PV) systems has increased over the past few years, not just in our part of the world. Future growth markets outside the temperate zones in particular, for example desert, (sub)tropical or alpine regions, also intend to use solar to a greater extent for generating electricity. However, there is currently only one standardised PV system for all climate zones. No options are available that can be adapted to different climate or grid conditions in specific applications.

Austrian lead project

Developing such application-specific options is the objective of the research in the Infinity project where five scientific partners and nine leading partners in industry have joined forces. The project is subsidised by the Climate and Energy Fund. Managing Director Theresia Vogel: “Projects such as Infinity help suppliers to manufacture more cost effectively and make affordable technologies available – and that worldwide.”

“What we want to achieve in the Austrian lead project is to create the basis for the next generation of PV components, systems and processes. Our research is therefore into adapting both the materials and the whole PV system to different climate conditions and special regional features. In our work, we also take such factors into account as extreme temperatures, sand and instable electrical grids,” says project manager Christina Hirschl from the research centre CTR Carinthian Tech Research.

“If we are to achieve the energy transition, we need smart PV systems that are long lasting, energy-efficient and also affordable. The project is also aimed at improving climate protection and making companies more competitive at an international level,” Hirschl adds.

ADAAPITVE SYSTEMS DELIVER HIGHER YIELD

The team of researchers will start off by conducting an in-depth error analysis to identify the mechanisms affecting how various materials, modules and inverters react in different climate zones both individually and as an overall system. They will then use the results gained to take a different approach to designing new, improved, climate-specific PV energy generation systems. “A special feature of the project is the holistic research method employed along the entire PV value chain - from the PV materials and components to module manufacture, PV system installation and maintenance.

The scientific findings will be used to develop further process, service and maintenance strategies. Our goal is to create new energy-efficient products and also new services,” Hirschl goes on to explain. Research is aimed at prolonging service life, reducing system costs and ultimately also yielding more electricity.

Lead scientist Michael Schwark from AIT adds: “The various inputs along the value chain will significantly improve the quality of the mathematical-physical models, enabling climate-related aging predictions to be given for all parts of a PV system. Apart from optimising the overall system, these models will also mean more accurate acceptance and maintenance recommendations for individual climate zones."

The research work provides an important basis for developing competitive, innovative products, such as flexible materials and PV modules that can be adapted to defined climate conditions as required.
As a whole, it will give the Austrian and European photovoltaics industry the opportunity to secure a competitive edge on the global market in terms of quality and above all establish sustainable research structures with scientific experts.

PROJECT FACTS & FIGURES
TITLE: INFINITY - Climate sensitive long-time reliability of photovoltaics
LEAD MANAGEMEN: Research centre CTR Carinthian Tech Research AG
SCIENTIFIC MANAGEMENT: Austrian Institute of Technology (AIT)
INDUSTRIAL PARTNERS: ENcome Energy Performance, Fronius International, Infineon Technologies Austria, Isovoltaic, KIOTO Photovoltaics, Polytec PT, PVI, PVSV, Ulbrich of Austria
SCIENTIFIC PARTNERS: AIT Austrian Institute of Technology, CTR Carinthian Tech Research, Vienna University of Applied Sciences, OFI Research Centre for Chemistry and Technology, PCCL Polymer Competence Center Leoben
DURATION: 3 years starting on 1 November 2015
RESEARCH VOLUME: €5.5 million

This project will be subsidised by Austria’s Climate and Energy Fund and carried out as part of its energy research programme. Since it was set up in 2007, the Climate and Energy Fund has provided grants totalling €32.4 million in the field of application-oriented research into solar thermal energy (STE) and photovoltaics (PV) for 68 projects (36 PV and 32 STE). The projects focus on improving system efficiency, developing energy-efficient manufacturing processes, using new materials and increasing the service life of components.

Weitere Informationen:

http://www.ctr.at/en/newspressvideos/press-releases
https://www.klimafonds.gv.at/

Mag Birgit Rader-Brunner | idw - Informationsdienst Wissenschaft

More articles from Power and Electrical Engineering:

nachricht Agricultural insecticide contamination threatens U.S. surface water integrity at the national scale
06.12.2018 | Universität Koblenz-Landau

nachricht Improving hydropower through long-range drought forecasts
06.12.2018 | Schweizerischer Nationalfonds SNF

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>