Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photovoltaic Systems adapted to their environment - project Infinity successfuly completed

21.11.2018

INFINITY is the major austrian project to investigate the influence of different environmental conditions on photovoltaic systems. 14 partners from science and industry produced pioneering results for a new generation of photovoltaic systems.

Photovoltaic (PV) systems are in use around the world in all kinds of different environments, including deserts, rainforests, temperate climates and high mountain regions. However, until now there have only been standardised systems for generating solar energy, which are not designed to be adaptable for different environmental conditions.


High-altitude radiation, sand, humidity or snow - different environmental conditions have an impact on solar energy output.

© ENcome Energy Performance GmbH

The three-year Austrian INFINITY project investigated how the entire photovoltaic system – starting with materials, components and processes – can be adapted to meet the demands of different environments and regions.

PIONEERING RESULTS
Led by the CTR Carinthian Tech Research centre, 14 project partners from science and industry conducted research into solutions to suit different environments in order to optimise energy output and increase system lifetimes.

This pioneering research has generated huge international interest, with over 1,200 environmental datasets being analysed from pv systems in Asia, the USA, South America and other locations around the world.

The results and opportunities for optimisation have been published in over 60 scientific journals worldwide, a patent application has been filed and the researchers have also played their part in global standardisation initiatives.

Project leader Dr Christina Hirschl from CTR said: “This research has allowed us to make a huge leap forward in terms of quality for photovoltaics. The systems have been optimised for different environments, and we can make specific service life predictions and maintenance recommendations for individual environments.”

The project was funded by the Austrian Climate and Energy Fund as part of its energy research programme. CEO Theresia Vogel said: “Austrian solar technology is in demand around the world.

Projects such as Infinity help make Austrian innovations a success in the global market – and in every climate – and ensure that Austria will be a research hub for a long time to come. Infinity has therefore played a crucial role in implementing #mission2030, the Austrian government’s climate and energy strategy.”

OUTPUT INFLUENCED BY ENVIRONMENT
Factors including extreme temperatures, moisture, salt levels, sand, high-altitude radiation and/or unstable electrical networks have long-term effects on PV systems and can lead to reduced output and shortened system service life over time.

“What makes this project unique is its aim, which was to analyse the entire value chain, from materials and components through to manufacture, installation and maintenance, and to improve it using solutions designed for specific environments”, continued Hirschl.

WIDE-RANGING RESEARCH
The research team carried out a comprehensive error analysis to determine how individual materials, modules and inverters behave in isolation and as an overall system in different environments and climates. Using this analysis, new solutions were developed for every part of the system, such as embedding materials, film-based backsheets, cell connectors, inverters and electrically conductive adhesives. The team also developed guidelines adapted to the various technologies and locations for effective monitoring and maintenance of PV systems.

Horst Sonnleitner, technical manager at international PV company ENcome Energy Performance, said: “The research results have given us answers to a number of long-standing questions. We now have methods and models to achieve maximum energy output no matter what the location.”

RESEARCH TEAM
INFINITY was a three-year collaborative research project (November 2015 to October 2018) involving 14 partners from research institutes, SMEs and large international companies.

Project leader: CTR Carinthian Tech Research AG
Scientific leader: AIT Austrian Institute of Technology GmbH
Nine partners from industry: ENcome Energy Performance, Fronius, Infineon Technologies Austria, Isovoltaic Solinex, Polytec PT, PVI, PVSV, PVP Photovoltaik, Ulbrich of Austria Five partners from scientific research institutes: AIT Austrian Institute of Technology, CTR Carinthian Tech Research, Vienna University of Applied Sciences, OFI Research Institute for Chemistry & Technology, PCCL Polymer Competence Center Leoben

As well as the project’s technical aims, a culture of innovation was created which will strengthen Austria’s overall position as a research location, and this success has also been reflected in follow-up projects: The project “Extreme” was submitted within the energy research program to investigate extreme desert operations and the next Austrian flagship project called “Sustainable Photovoltaics”, researching targeted and sustainable recycling, has already begun.

Wissenschaftliche Ansprechpartner:

Dr Christina Hirschl
Research Manager Smart Systems
CTR Carinthian Tech Research

Originalpublikation:

https://www.ctr.at/en/news/news-press/details/news/photovoltaik-systeme-die-sich...

Weitere Informationen:

Video in German: https://www.youtube.com/watch?v=nozi0j0SYIA&t=112s

Mag Birgit Rader-Brunner | idw - Informationsdienst Wissenschaft
Further information:
http://www.ctr.at/

Further reports about: AIT PV systems Photovoltaic energy output photovoltaic system solar energy

More articles from Power and Electrical Engineering:

nachricht Fraunhofer starts development of refrigerant-free, energy-efficient electrocaloric heat pumps
09.12.2019 | Fraunhofer IPM

nachricht A solution for cleaning up PFAS, one of the world's most intractable pollutants
06.12.2019 | Colorado State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>