Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Perovskite solar cells: International consensus on ageing measurement protocols

31.01.2020

Experts from 51 research institutions have now agreed on the procedures for measuring the stability of perovskite solar cells and assessing their quality. The consensus statement was published in Nature Energy and is considered a milestone for the further development of this new type of solar cell on its way to industrial application.

Commercially available solar modules undergo a series of characterisation procedures that analyse their properties and ensure quality. However, these methods cannot simply be transferred to halide perovskite solar cells.


© Catalan Institute of Nanoscience and Nanotechnology

Halide perovskites are hybrid inorganic-organic materials for a new generation of solar cells, which have only been investigated for about eleven years.

Perovskite solar cells achieve very high efficiencies and can be processed very cost-effectively from solution as extremely thin layers. However, perovskite-based solar cells are not yet stable enough to be commercialised.

Consensus on protocols

Now, international experts from 51 research institutes under the leadership of Prof. Mónica Lira-Cantú (Institut Catala de Nanosciencia i Nanotechnologia) and Prof. Eugene A. Katz (Ben-Gurion University of the Negev) have agreed on the ageing protocols suitable for this class of materials.

From the Helmholtz-Zentrum Berlin, Prof. Antonio Abate and his PhD student Hans Köbler were involved. The first author of the study, Dr. Mark Khenkin, is now also working as a postdoc at the HZB Institute PVcomB. Eugene Katz will soon complete a longer research stay at HZB. The consensus statement extends the ISOS protocols developed in 2011 for organic solar cells for the stability assessment of perovskite photovoltaics by further tests and parameters.

The test procedures are tailored to the specific characteristics of perovskite solar cells and can thus also map their special properties.

Step forward to industrialisation

In particular, the consensus allows for better comparability of ageing data between international laboratories and thus promotes meaningful analyses of degradation processes that affect stability. A checklist for reporting the results should further improve reproducibility.

This is a major milestone on the way from the laboratory to industry, writes Nature Energy in an editorial to the publication, which has now even been highlighted by the European Commission.

The consensus statement is published in Nature Energy 2020: "Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures".

Wissenschaftliche Ansprechpartner:

Dr. Antonio Abate
E-Mail: antonio.abate@helmholtz-berlin.de

Originalpublikation:

https://www.helmholtz-berlin.de/hzbin/doi.org/10.1038/s41560-019-0529-5

Weitere Informationen:

https://www.helmholtz-berlin.de/hzbin/news_seite?nid=21023;sprache=en;seitenid=9...
https://www.nature.com/articles/s41560-020-0552-6

Dr. Ina Helms | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

More articles from Power and Electrical Engineering:

nachricht New graphene-based metasurface capable of independent amplitude and phase control of light
20.02.2020 | The Korea Advanced Institute of Science and Technology (KAIST)

nachricht A step towards controlling spin-dependent petahertz electronics by material defects
19.02.2020 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Journey to the center of Mars

20.02.2020 | Physics and Astronomy

Laser writing enables practical flat optics and data storage in glass

20.02.2020 | Physics and Astronomy

New graphene-based metasurface capable of independent amplitude and phase control of light

20.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>