Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Performance boost for microchips

08.05.2012
German scientists of the Fraunhofer Institutes for Laser Technology ILT Aachen, for Material and Beam Technology IWS Dresden and for Applied Optics and Precision Engineering IOF Jena obtained the Joseph-von- Fraunhofer prize on May 8, 2012. They were honoured together with their teams in the scope of the annual meeting of the Fraunhofer Society in Stuttgart, Germany, for their joint development of key components for EUV lithography.

Flat computers, powerful cell phones and tablets – the integrated circuits, our computers‘ power centers, are becoming increasingly smaller and more complex.


EUV Technology for the production of the next chip generation. Picture source: Fraunhofer-Institute for Laser Technology ILT, Aachen, Germany.


Jointly developed key components for EUV lithography: Dr. Tosten Feigl, Dr. Stefan Braun and Dr. Klaus Bergmann (from left to right) with a collector mirror. Picture source: Dirk Mahler/Fraunhofer

The microchips in today‘s computers already contain some two billion transistors. To get the chip density right, the structures are exposed onto the chips by means of lithography. To be able to meet future requirements, the semi-conductor industry is planning to convert the exposure using a wavelength of 193 nm to a wavelength of just 13.5 nm. This can be achieved only with completely new radiation sources.

The favorite of the Next-Generation lithography is EUV – light with wavelengths in the extreme ultraviolet range. Dr. Klaus Bergmann, Dr. Stefan Braun and Dr. Torsten Feigl from the Fraunhofer Institutes for Laser Technology ILT Aachen, for Material and Beam Technology IWS Dresden and for Applied Optics and Precision Engineering IOF Jena, have developed, with their teams, key elements for EUV lithography: light sources (ILT), collector optics (IOF) and illumination and projection optics (IWS). They will receive a 2012 Joseph-von- Fraunhofer prize for their achievements in this strategic partnership.

Generating EUV radiation

The efficiency of the light source is key to the industrial use of EUV. The team around Klaus Bergmann at ILT developed the first prototypes of the EUV source as early as 2006. There is now a beta version that is already being used to expose chips in industrial applications. “The concept is based on the rapid, pulsed discharge of electrically stored energy. In the process, a small amount of tin is vaporized using a laser and excited with a high current to an emission at 13.5 nm – many thousands of times per second”, explains Bergmann.

World‘s largest collector mirror for EUV lithography

The quality of the collector mirror is crucial to the radiation hitting the exposure mask in exactly the right place. The coating guarantees that the losses remain low and that the quality of the focused EUV radiation is high. “The challenge we faced was to develop and apply a multilayer coating system that combined high EUV reflectance with high thermal and radiation stability onto the strongly curved collector surface”, said Torsten Feigl from IOF. The result is the world‘s largest multi-layer coated EUV mirror with a diameter of more than 660 millimeters.

Coating for optimized reflection on mirrors and lenses

Once the radiation passed the mask, it is exposed onto the chips via further projection mirrors. Stefan Braun and his team at IWS have devised the optimum reflection layer for these components. Magnetron sputtering ensures maximum layer accuracy, without additional polishing processes or in-situ thickness control being required. One machine type for large area precision coating is already in industrial use. Germany is the pioneer of EUV technology. Three institutes have established themselves with their research work as key partners for the supplier industry both in and outside Europe. The new lithography technology is expected to start industrial production in 2015.

Joseph-von-Fraunhofer prize – research for practical applications

Since 1978, Fraunhofer-Gesellschaft has awarded the annual prizes for outstanding scientific achievements of its employees that resolve application-related problems. To date, more than 200 researchers have won this prize. This year, four prizes worth 20,000 euro each will be awarded. The prize winners will also receive a silver pin with the facial profile of the patron saint as it appears in the logo of articles 2 to 5.

Contacts at the Fraunhofer ILT
If you have any questions regarding this topic, please feel free to contact our experts:
Dr. Klaus Bergmann
Group Manager EUV Technology
Phone +49 241 8906-302
klaus.bergmann@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen
Phone +49 241 8906-0
Fax +49 241 8906-121

Axel Bauer | Fraunhofer Forschung Kompakt
Further information:
http://www.ilt.fraunhofer.de

More articles from Power and Electrical Engineering:

nachricht Researchers produce synthetic Hall Effect to achieve one-way radio transmission
13.09.2019 | University of Illinois College of Engineering

nachricht Penn engineers' new topological insulator reroutes photonic 'traffic' on the fly
13.09.2019 | University of Pennsylvania

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Novel mechanism of electron scattering in graphene-like 2D materials

17.09.2019 | Materials Sciences

Novel anti-cancer nanomedicine for efficient chemotherapy

17.09.2019 | Health and Medicine

Fungicides as an underestimated hazard for freshwater organisms

17.09.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>