Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paper-based supercapacitor uses metal nanoparticles to boost energy density

06.10.2017

Using a simple layer-by-layer coating technique, researchers from the U.S. and Korea have developed a paper-based flexible supercapacitor that could be used to help power wearable devices. The device uses metallic nanoparticles to coat cellulose fibers in the paper, creating supercapacitor electrodes with high energy and power densities - and the best performance so far in a textile-based supercapacitor.

By implanting conductive and charge storage materials in the paper, the technique creates large surface areas that function as current collectors and nanoparticle reservoirs for the electrodes. Testing shows that devices fabricated with the technique can be folded thousands of times without affecting conductivity.


Images show the difference between paper prior to metallization (left) and the paper coated with conductive nanoparticles.

Credit: Ko et al., published in Nature Communications

"This type of flexible energy storage device could provide unique opportunities for connectivity among wearable and internet of things devices," said Seung Woo Lee, an assistant professor in the Woodruff School of Mechanical Engineering at the Georgia Institute of Technology. "We could support an evolution of the most advanced portable electronics. We also have an opportunity to combine this supercapacitor with energy-harvesting devices that could power biomedical sensors, consumer and military electronics, and similar applications."

The research, done with collaborators at Korea University, was supported by the National Research Foundation of Korea and reported September 14 in the journal Nature Communications.

Energy storage devices are generally judged on three properties: their energy density, power density and cycling stability. Supercapacitors often have high power density, but low energy density - the amount of energy that can be stored - compared to batteries, which often have the opposite attributes. In developing their new technique, Lee and collaborator Jinhan Cho from the Department of Chemical and Biological Engineering at Korea University set out to boost energy density of the supercapacitors while maintaining their high power output.

The researchers began by dipping paper samples into a beaker of solution containing an amine surfactant material designed to bind the gold nanoparticles to the paper. Next they dipped the paper into a solution containing gold nanoparticles. Because the fibers are porous, the surfactants and nanoparticles enter the fibers and become strongly attached, creating a conformal coating on each fiber.

By repeating the dipping steps, the researchers created a conductive paper on which they added alternating layers of metal oxide energy storage materials such as manganese oxide. The ligand-mediated layer-by-layer approach helped minimize the contact resistance between neighboring metal and/or metal oxide nanonparticles. Using the simple process done at room temperatures, the layers can be built up to provide the desired electrical properties.

"It's basically a very simple process," Lee said. "The layer-by-layer process, which we did in alternating beakers, provides a good conformal coating on the cellulose fibers. We can fold the resulting metallized paper and otherwise flex it without damage to the conductivity."

Though the research involved small samples of paper, the solution-based technique could likely be scaled up using larger tanks or even a spray-on technique. "There should be no limitation on the size of the samples that we could produce," Lee said. "We just need to establish the optimal layer thickness that provides good conductivity while minimizing the use of the nanoparticles to optimize the tradeoff between cost and performance."

The researchers demonstrated that their self-assembly technique improves several aspects of the paper supercapacitor, including its areal performance, an important factor for measuring flexible energy-storage electrodes. The maximum power and energy density of the metallic paper-based supercapacitors are estimated to be 15.1mWcm?2 and 267.3 μWh cm?2, respectively, substantially outperforming conventional paper or textile supercapacitors.

The next steps will include testing the technique on flexible fabrics, and developing flexible batteries that could work with the supercapacitors. The researchers used gold nanoparticles because they are easy to work with, but plan to test less expensive metals such as silver and copper to reduce the cost.

During his Ph.D. work, Lee developed the layer-by-layer self-assembly process for energy storage using different materials. With his Korean collaborators, he saw a new opportunity to apply that to flexible and wearable devices with nanoparticles.

"We have nanoscale control over the coating applied to the paper," he added. "If we increase the number of layers, the performance continues to increase. And it's all based on ordinary paper."

###

In addition to those already mentioned, the research team included Yongmin Ko and Minseong Kwon from Korea University, Wan Ki Bae from the Photoelectronic Hybrids Research Center at the Korea Institute of Science and Technology, and Byeongyong Lee from Georgia Tech.

This work was supported by National Research Foundation (NRF) grants funded by the Korean government (NRF-2015R1A2A1A01004354 and NRF-2016M3A7B4910619).

CITATION: Yongmin Ko, Minseong Kwon, Wan Ki Bae, Byeongyong Lee, Seung Woo Lee & Jinhan Cho, "Flexible supercapacitor electrodes based on real metal-like cellulose papers," (Nature Communications, 2017) http://dx.doi.org/10.1038/s41467-017-00550-3

Media Contact

John Toon
jtoon@gatech.edu
404-894-6986

 @GeorgiaTech

http://www.gatech.edu 

John Toon | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht The role of Sodium for the Enhancement of Solar Cells
17.07.2018 | Max-Planck-Institut für Eisenforschung GmbH

nachricht Behavior-influencing policies are critical for mass market success of low carbon vehicles
17.07.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>