Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oxides flex their bonds

22.12.2008
Structural and electronic rearrangements discovered in the new oxide LiRh2O4 provide hints for improving electricity generation from heat

The interplay between the electronic properties and atoms of a crystal is the origin of many fascinating phenomena such as superconductivity. Physicists from the RIKEN Advanced Science Institute, Wako, the University of Tokyo and Osaka University have now discovered another intriguing phenomenon in the newly synthesized oxide compound LiRh2O4, which could lead to a more efficient generation of electricity from heat.

LiRh2O4 belongs to one of the most common families of oxides, the spinels. Spinels are an attractive playground for physicists: the unique geometry of their atomic lattice can make a mutually convenient arrangement of electrons and ions difficult. At room temperature, the rhodium ions in LiRh2O4 are forced to assume a state of mixed valency, Rh3.5+, whereas the electrons are distributed indiscriminately between the different orbital electronic states.

Led by Hidenori Takagi, the researchers studied how this uneasy arrangement in LiRh2O4 plays out at lower temperatures1, and they have discovered several electronic and structural rearrangements occurring at different temperatures. At 230 K (-43.15 °C), the crystal suddenly expands in one direction and contracts in another, a structural change attributed to the ‘Jahn-Teller effect’. A common occurrence in oxides, this effect explains how the crystal distorts itself to gain energy by lifting the equivalence between the different orbital electronic states, in this case favoring the yz and zx orbitals over the xy ones.

Surprisingly, at the temperature of 170 K (-103.15 °C) the electrical resistivity suddenly increases, and the material changes from a metal to an insulator. This transition indicates that the Rh3.5+ ions have separated into Rh3+ and Rh4+ ions. Intriguingly, it is the Jahn-Teller effect that dictates this transition because it is the electrons from the Rh4+ ions occupying the xy orbitals that are exposed by the crystal distortion. “The Jahn-Teller effect really is the master of the physics here,” notes Takagi.

The implications of this discovery may extend well beyond the interest of physicists because, owing to the indiscriminateness of electrons, the thermoelectric power of LiRh2O4 is enhanced dramatically when the Jahn-Teller effects are about to occur. A large figure for thermoelectric power is the key to efficient generation of electricity from heat. “Our study provides an important clue for the exploration of high-performance thermoelectrics and therefore bridges basic and applied physics,” says Takagi. The restructuring seen in this spinel compound may well prove an important template for more efficient electricity generation.

Reference

1. Okamoto, Y., Niitaka, S., Uchida, M., Waki, T., Takigawa, M., Nakatsu, Y. , Sekiyama, A., Suga, S., Arita, R. & Takagi, H. Band Jahn-Teller instability and formation of valence bond solid in a mxed-valent spinel oxide LiRh2O4. Physical Review Letters 101, 086404 (2008).

The corresponding author for this highlight is based at the RIKEN Magnetic Materials Laboratory

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/610/
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes
20.07.2018 | Science China Press

nachricht Future electronic components to be printed like newspapers
20.07.2018 | Purdue University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>