Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OU engineers discover novel role of water in production of renewable fuels

01.04.2019

University of Oklahoma engineers in collaboration with the University of Tulsa have discovered a novel approach for the water-assisted upgrading of the renewable chemical, furfural, doubling or tripling the rate of conversion.

"Energy and water are interconnected in the production of renewable fuels. On the one hand, energy is needed to extract, purify and distribute water. On the other hand, water is useful in producing energy," said Daniel Resasco, professor in the School of Chemical, Biological and Materials Engineering, Gallogly College of Engineering.


OU engineers have discovered a novel approach for the water-assisted upgrading of the renewable chemical, furfural, doubling or tripling the rate of conversion.

Credit: University of Oklahoma

"It is known that water plays an important role as an environmentally-friendly solvent, replacing organic solvents. The novelty is that it can accelerate the rate of hydrogenation."

In the chemical production of energy in conventional refining, the presence of water in the reactors is undesirable. Normally, when water is present in a reacting system where a catalytic reaction is taking place, it typically absorbs where the reaction should occur, which inhibits the rate of conversion.

"A group of chemical engineering graduate and undergraduate students participated in the discovery of water as a participant in the catalytic conversion of furfural without inhibiting the reaction and leading to a great rate enhancement in the process," said Bin Wang, assistant professor in the School of Chemical, Biological and Materials Engineering, Gallogly College of Engineering.

Furfural is a biomass-derived compound that is considered a valuable platform for production of fuels and chemicals. An important strategy is to hydrogenate the molecule so it can be used in the chemical industry later. The group has shown that when the molecule contains an oxygenated group, hydrogenation occurs from the liquid phase instead of the catalyst surface.

In the absence of water, all steps in the reaction occur on the catalyst surface. In the presence of water as a solvent, the hydrogen can be 'shuttled' through the water molecule in a higher rate for the reaction. This latter path requires a lower energy barrier to take place and is faster. An article describing this unique mechanism has been published in Nature Catalysis.

###

The OU Catalysis Group received a U.S. Department of Energy grant in the amount of $650,000 to further explore the role of water in upgrading renewable fuels in the chemical production of energy.

For more information, contact OU Professor Resasco at resasco@ou.edu or OU Professor Wang at wang_cbme@ou.edu.

Media Contact

Jana Smith
jana.smith@ou.edu
405-325-1322

 @ouresearch

http://www.ou.edu 

Jana Smith | EurekAlert!
Further information:
https://bit.ly/2FNWnsZ

More articles from Power and Electrical Engineering:

nachricht The new technology will significantly enhance energy harvest from PV modules
12.06.2019 | Estonian Research Council

nachricht NextGenBat: Basic research for mobile energy storage systems
12.06.2019 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Concert of magnetic moments

14.06.2019 | Information Technology

Materials informatics reveals new class of super-hard alloys

14.06.2019 | Materials Sciences

New imaging modality targets cholesterol in arterial plaque

14.06.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>