Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On the way to printable organic light emitting diodes

11.07.2019

Organic light-emitting diodes (OLEDs) are used today in many electronic devices for display applications, ranging from smartphones to televisions. Scientists at the Max Planck Institute for Polymer Research (MPI-P) have now succeeded in developing a new design for these LEDs. They have been able to reduce the number of different layers that make up an OLED to just one. In the future, this could allow light-emitting diodes that can be printed with an inkjet printer. The first prototype of the developed diode can already compete with current, commercially available OLEDs in terms of luminosity and efficiency.

Organic light-emitting diodes are components that no longer consist of compounds containing the semiconducting material gallium, but of so-called organic compounds in which carbon is a main component.


The first prototype of the OLED developed in Mainz illuminates the MPI-P logo

© MPI-P, Lizenz CC-BY-SA

Compared to conventional light-emitting diodes, however, the luminosity and lifetime of OLEDs are currently lower, which is why they represent a current field of research.

Scientists at the MPI-P led by group leader Dr. Gert-Jan Wetzelaer (Department of Prof. Paul Blom) have now developed a new OLED concept. Nowadays, OLEDs consist of various wafer-thin layers. Some layers are used to transport charges, while others are used to efficiently introduce electrons into the active layer in which light is generated.

Thus, current OLEDs can easily consist of five to seven layers. The researchers have now developed an OLED which consists only of one single layer that is supplied with electricity via two electrodes. This simplifies the production of such OLEDs and paves the way for printable displays.

With their first prototype, the Mainz scientists were able to show that they can generate a brightness of the emitted light of 10,000 candela/square meter with a voltage of only 2.9 volts - this corresponds to about 100 times the luminosity of modern screens.

Achieving such high luminosity at this low voltage is a record for current OLEDs. The researchers were also able to measure an external efficiency of 19%, which means that 19% of the electrical energy supplied is converted into light that comes out in direction of the viewer. Also with this value, the OLED prototype can compete with current OLEDs consisting of five or even more layers.

In continuous operation, the researchers were able to measure a so-called LT50 lifetime of almost 2000 hours at a brightness equivalent to ten times that of modern displays. Within this time, the initial luminosity has dropped to 50% of its value.

"For the future, we hope to be able to improve the concept even further and thus achieve even longer lifetimes. This means that the concept could be used for industrial purposes," says Wetzelaer.

The scientists hope that their newly developed single-layer concept - i.e. the reduced complexity of OLEDs - will contribute to the identification and improvement of the processes responsible for the reduction in luminance over time.

The scientists are using a light-emitting layer based on so-called “Thermally Activated Delayed Fluorescence” (TADF). This physical principle has been known for several decades, but became the focus of OLED research about 10 years ago, when an efficient conversion of electrical energy into light was demonstrated in Japan.

Since then, researchers have been working to produce TADF-based OLEDs, as these do not require expensive molecular complexes containing rare-earth metals that are being used in current OLEDs.

The researchers have now published their results in the renowned journal "Nature Photonics".

Wissenschaftliche Ansprechpartner:

Dr. Gert-Jan Wetzelaer
Group Leader
Phone:+49 6131 379-558
Email: wetzelaer@mpip-mainz.mpg.de

Originalpublikation:

Efficient and stable single-layer organic light-emitting diodes based on thermally activated delayed fluorescence
Naresh B. Kotadiya, Paul W. M. Blom & Gert-Jan A. H. Wetzelaer
Nature Photonics
https://doi.org/10.1038/s41566-019-0488-1

Weitere Informationen:

http://www.mpip-mainz.mpg.de/blom - Website of the department of Prof. Blom

Dr. Christian Schneider | Max-Planck-Institut für Polymerforschung
Further information:
http://www.mpip-mainz.mpg.de

More articles from Power and Electrical Engineering:

nachricht University of Magdeburg engineers revolutionize molecular microscopy
11.07.2019 | Otto-von-Guericke-Universität Magdeburg

nachricht New technique allows real-time microscopy at high heat and loading
09.07.2019 | North Carolina State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

Im Focus: First results of the new Alphatrap experiment

Physicists at the Max Planck Institute for Nuclear Physics in Heidelberg report the first result of the new Alphatrap experiment. They measured the bound-electron g-factor of highly charged (boron-like) argon ions with unprecedented precision of 9 digits. In comparison with a new highly accurate quantum electrodynamic calculation they found an excellent agreement on a level of 7 digits. This paves the way for sensitive tests of QED in strong fields like precision measurements of the fine structure constant α as well as the detection of possible signatures of new physics. [Physical Review Letters, 27 June 2019]

Quantum electrodynamics (QED) describes the interaction of charged particles with electromagnetic fields and is the most precisely tested physical theory. It...

Im Focus: Experimental physicists redefine ultrafast, coherent magnetism

For the first time ever, experimental physicists have been able to influence the magnetic moment of materials in sync with their electronic properties. The coupled optical and magnetic excitation within one femtosecond corresponds to an acceleration by a factor of 200 and is the fastest magnetic phenomenon that has ever been observed.

Electronic properties of materials can be directly influenced via light absorption in under a femtosecond (10-15 seconds), which is regarded as the limit of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Puzzling on a quantum chessboard

10.07.2019 | Physics and Astronomy

Fraunhofer WKI develops sustainable sandwich elements made from wood foam and textile-reinforced

10.07.2019 | Materials Sciences

Could vacuum physics be revealed by laser-driven microbubble?

10.07.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>