Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On the road to non-toxic and stable perovskite solar cells

12.05.2020

Among the new materials for solar cells, the halide perovskites are considered particularly promising. Within a few years, the efficiency of such perovskite solar cells raised from a few percents to over 25 %. Unfortunately, the best perovskite solar cells contain toxic lead, which poses a hazard to the environment. However, it is surprisingly challenging to replace the lead with less toxic elements. One of the best alternatives is tin.

Halogenide perovskites with tin instead of lead should show excellent optical properties, but in practice, their efficiencies are mediocre and decrease rapidly. And this rapid "aging" is their main disadvantage: the tin cations in the perovskite structure react very quickly with oxygen from the environment so that their efficiency drops.


The illustration shows the changes in the structure of FASnI3:PEACl films during treatment at different temperatures.

Credit: HZB/Meng Li

Now, an international cooperation led by Antonio Abate, HZB, and Zhao-Kui Wang, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, China, has achieved a breakthrough that opens up a path to non-toxic perovskite-based solar cells that provides stable performance over a long period.

They also use tin instead of lead but have created a two-dimensional structure by inserting organic groups within the material, which leads to so-called 2D Ruddlesden-Popper phases. "We use phenylethylammonium chloride (PEACl) as an additive to the perovskite layers.

Then we carry out a heat treatment while the PEACl molecules migrate into the perovskite layer. This results in vertically ordered stacks of two-dimensional perovskite crystals" explains first author Dr Meng Li. Li is a postdoc in Abate's group and has organised the close cooperation with the Chinese partners.

At the Shanghai Synchrotron Radiation Facility (SSRF), they were able to precisely analyse the morphology and crystal characteristics of the perovskite films after different annealing treatments.

The best of these lead-free perovskite solar cells achieved an efficiency of 9.1 % and high stability values, both under daytime conditions and in the dark. The PEACl molecules accumulate between the crystalline perovskite layers as a result of the heat treatment and form a barrier that prevents the tin cations from oxidising. "This work paves the way for more efficient and stable lead-free perovskite solar cells," Abate is convinced.

Media Contact

Dr. Antonio Abate
antonio.abate@helmholtz-berlin.de
49-308-062-14380

 @HZBde

http://www.helmholtz-berlin.de 

Dr. Antonio Abate | EurekAlert!
Further information:
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=21321;sprache=en
http://dx.doi.org/10.1021/acsenergylett.0c00782

More articles from Power and Electrical Engineering:

nachricht H2020 Grant for perovskite-based lighting, wearables and fabric devices with LiFi and photovoltaic capabicapability
12.05.2020 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Fraunhofer ISE’s CalLab PV Modules Improves Measurement Uncertainty to Record Value of 1.1 %
08.05.2020 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future information technologies: 3D Quantum Spin Liquid revealed

Quantum Spin Liquids are candidates for potential use in future information technologies. So far, Quantum Spin Liquids have usually only been found in one or two dimensional magnetic systems only. Now an international team led by HZB scientists has investigated crystals of PbCuTe2O6 with neutron experiments at ISIS, NIST and ILL. They found spin liquid behaviour in 3D, due to a so called hyper hyperkagome lattice. The experimental data fit extremely well to theoretical simulations also done at HZB.

IT devices today are based on electronic processes in semiconductors. The next real breakthrough could be to exploit other quantum phenomena, for example...

Im Focus: IST Austria scientists demonstrate quantum radar prototype

Physicists at the Institute of Science and Technology Austria (IST Austria) have invented a new radar prototype that utilizes quantum entanglement as a method of object detection. This successful integration of quantum mechanics into our everyday devices could significantly impact the biomedical and security industries. The research is published in the journal Science Advances.

Quantum entanglement is a physical phenomenon where two particles remain inter-connected, sharing physical traits regardless of how far apart they are from one...

Im Focus: First simulation of a full-sized mitochondrial membrane

New algorithm links different scales, bringing simulated cell a step closer

Scientists from the University of Groningen have developed a method that combines different resolution levels in a computer simulation of biological membranes.

Im Focus: How Nano-Sensors Help with Treatment

ESF-funded project "SenseCare” at Chemnitz University of Technology successfully completed - Therapeutic support, especially for diabetes mellitus

In the medical field, flexible and highly sensitive sensors can combine diagnostics and treatment with high comfort for patients.

Im Focus: Quantum jump tipping the balance

A new door to the quantum world: when an atom absorbs or releases energy via the quantum jump of an electron, it becomes heavier or lighter, according to Einstein’s theory of relativity (E = mc²). However, the effect is minuscule for a single atom. Nevertheless, the team of Klaus Blaum and Sergey Eliseev at the Max Planck Institute for Nuclear Physics has successfully measured this tiny change in the mass of individual atoms for the first time. In order to achieve this, they used the ultra-precise Pentatrap atomic balance at the institute in Heidelberg. The team discovered a previously unobserved quantum state in rhenium, which could be interesting for future atomic clocks.

Astonishing, but true: if you wind a mechanical watch, it becomes heavier. The same thing happens when you charge your smartphone. This can be explained by the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

 
Latest News

Medicinal plants thrive in biodiversity hotspots

12.05.2020 | Life Sciences

Single-cell RNA seq method developed to accurately quantify cell-specific drug effects in pancreatic islets

12.05.2020 | Life Sciences

H2020 Grant for perovskite-based lighting, wearables and fabric devices with LiFi and photovoltaic capabicapability

12.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>