Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Official Starting Signal for Research Alliance for Wind Energy

01.02.2013
A unique alliance for German wind energy research was officially formed in Berlin yesterday - the Research Alliance for Wind Energy.

Representatives of the three partners, the German Aerospace Centre (DLR), ForWind, the Center for Wind Energy Research of the Universities Oldenburg, Hannover and Bremen, and the Fraunhofer Institute for Wind Energy and Energy Systems Technology (IWES) signed the cooperation agreement.

The combined know-how of more than 600 scientists will pave the way for groundbreaking impulses for a renewable energy future based on on- and offshore wind energy.

The research alliance, through its personnel strength and by networking knowledge and expertise, will be able to successfully process long term and strategically important major projects. A research infrastructure with test centres and laboratories will process innovative issues and set standards across the globe.

Federal Minister for the Environment Peter Altmaier welcomed the founding: „A coordinated alliance for wind energy research strengthens companies based in Germany and contributes to their future. A successful energy turnaround requires efficient and reliable wind energy turbines which the research alliance is working on”.

The community of the research alliance has an international charisma and opens up synergies for upcoming major projects in the wind industry. Answers to technologically demanding questions are urgently needed for the increasing professionalization of the branch and the maintaining of technological leadership. The partners’ content-related cooperation starts directly in the BMU funded project “Smart Blades – Development and Construction of Intelligent Rotor Blades” which has a project volume of 12 million Euros and a runtime of 39 months.

Joint Research on Intelligent Rotor Blades
Researchers expect that smart blade technologies will result in rotor blade load reduction enabling an aerodynamically optimized and lighter design of wind energy turbines. Design changes can lead to reductions in material and logistics costs and increases in turbine service life.

Rotor blade trailing edges which can change their shape and flaps which divert wind when required – very large rotor blades equipped with such mechanisms can systematically correct gusts and reduce performance fluctuations. As a result susceptibility to damage can be reduced and longer service life achieved. Such active technologies are already being tested in aeronautics and are now to be applied in wind energy.

If the wind blows too strongly today’s rotor blades are turned full length out of the wind. In the meantime, the new blades, up to 85 meter in length, move over an area equivalent to more than several football fields with every rotation. The gustiness of wind though, leads to very different wind conditions within this large area and so cannot be taken into account when making blanket – and also relatively slow – adjustments to the entire rotor blade. For this reason local flow is now to be influenced more accurately and quickly through movable slats, trailing edges and other systems.

Great Challenges in the Wind Energy Branch
Turbine builders so far have shied away from the development and use of smart blades. The great challenge will be that through use of active mechanisms the rotor blades do not become less reliable, heavier and more maintenance intensive and prime costs do not increase. Therefore, the target of the research project is proving the feasibility, efficiency and reliability of smart blades.

The kick-off for this first major alliance project was the starting point for work, using one „passive“ and two alternative „active“ technologies, on the rotor blade design tasks.

Contact for further information:

DLR
Dorothee Bürkle, Communications DLR
P: +49 2203 601 3492
E: dorothee.buerkle@dlr.de
ForWind
Dr. Stephan Barth - Managing Director
P: +49 441 798 5091
E: stephan.barth@forwind.de
Fraunhofer IWES
Prof. Dr.-Ing. Andreas Reuter
Managing Director Fraunhofer IWES
P: +49 471 14290-200
E: andreas.reuter@iwes.fraunhofer.de

Uwe Krengel | Fraunhofer-Institut
Further information:
http://www.dlr.de/
http://www.forwind.de/
http://www.iwes.fraunhofer.de/

More articles from Power and Electrical Engineering:

nachricht Nano-scale process may speed arrival of cheaper hi-tech products
09.11.2018 | University of Edinburgh

nachricht Nuclear fusion: wrestling with burning questions on the control of 'burning plasmas'
25.10.2018 | Lehigh University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>