Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Non-damaging and efficient: plasma steriliser for medical and aerospace applications

02.02.2015

Traditional sterilisation methods are no longer effective against all pathogens. By means of plasma, on the other hand, exceptionally stubborn bacteria stems can be killed off, as demonstrated by Junior Professor Dr Katharina Stapelmann from the Institute for Electrical Engineering and Plasma Technology. She has developed a steriliser that is specifically suited for ridding medical instruments of germs efficiently, yet without damaging the material. As reported in the RUB’s science magazine “RUBIN”, the process is also interesting for the aerospace industry.

Perfect fit for medical applications


Plasma – the state of matter with the highest energy level – is familiar to many in nature in the form of fire. Using cold plasmas, many items can be efficiently sterilised.

RUBIN, photo: Gorczany

Stapelmann designed the sterilisation chamber as a drawer with a surface in DIN-A4 format to hold standard tablets for medical instruments. The drawer may also be used as a sterile container. “You can, for example, put a set that’s going to be used in an appendectomy into the device, sterilise it and store the closed container in the cupboard right until surgery,” explains the researcher.

Compared with traditional processes, plasma sterilisation is more energy saving, faster and does not require any harmful radiation or carcinogenic chemicals. Unlike autoclaves, which apply moist heat, the process can be deployed for synthetic components, and it does not damage metal items which an autoclave blunts within a short space of time. A prototype of the steriliser is already available. What is now missing is an industrial partner who will make the product market-ready.

Germ-free in space

In order to prevent germs from the Earth from getting into space, and germs from space from getting to Earth, it is standard practice to sterilise all aerospace materials. However, not all pathogens are destroyed by this multi-stage process.

In collaboration with the German Aerospace Center, Katharina Stapelmann tested her method for metal screws which were riddled with the spores of the particularly stubborn bacterium Bacillus pumilis SAFR032.

This bacteria stem has demonstrated the to-date highest resistance against traditional sterilisation methods, such as autoclaves, chemical treatment or UV radiation. The plasma treatment, however, destroyed all germs within the space of only five minutes at a temperature of 60 degrees centigrade.

Detailed article in the science magazine RUBIN

A detailed article with pictures can be found in the online magazine RUBIN, the RUB’s science magazine: http://rubin.rub.de/en/germ-free-space. Text and images in the download page are free for use for editorial purposes, provided the relevant copyright notice is included. You would like to receive a notification when new RUBIN articles are published? Then subscribe to our news feed at http://rubin.rub.de/feed/rubin-en.rss.

About Katharina Stapelmann

Katharina Stapelmann was appointed Junior Professor at the Faculty of Electrical Engineering and Information Technology on February 1, 2015, and she heads the group “Plasma Technology in Biomedical Applications”. In December 2013, she obtained her doctorate summa cum laude with the thesis “Plasma technical and microbiological characterization of newly developed VHF plasmas”. Following her graduation in Electrical Engineering and Information Technology, she worked since 2009 as researcher at the Institute for Electrical Engineering and Plasma Technology, headed by Prof Dr-Ing. Peter Awakowicz, at RUB.

Further information

Junior Professor Dr-Ing. Katharina Stapelmann, Institute for Electrical Engineering and Plasma Technology, Faculty of Electrical Engineering and Information Technology at the Ruhr-Universität, 44780 Bochum, Germany, phone: +49/234/32-29445, email: stapelmann@aept.rub.de

One click away

More plasma research in RUBIN
http://rubin.rub.de/en/making-synthetic-materials-more-impervious

Dr. Julia Weiler | idw - Informationsdienst Wissenschaft

More articles from Power and Electrical Engineering:

nachricht Battery research at Graz University of Technology: new breakthroughs in research on super-batteries
25.04.2019 | Technische Universität Graz

nachricht Energy-saving new LED phosphor
24.04.2019 | Universität Innsbruck

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

High-efficiency thermoelectric materials: New insights into tin selenide

25.04.2019 | Materials Sciences

Salish seafloor mapping identifies earthquake and tsunami risks

25.04.2019 | Earth Sciences

Using DNA templates to harness the sun's energy

25.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>