Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New NIST Trace Explosives Standard Slated for Homeland Security Duty

10.09.2009
Security personnel need to be able to find explosive materials and persons who have been in contact with them.

To aid such searches, the National Institute of Standards and Technology (NIST), with support from the Department of Homeland Security, has developed a new certified reference material, Standard Reference Material (SRM) 2905, Trace Particulate Explosives.

Compatible with field and laboratory assay methods, the SRM will be helpful in calibrating, testing and developing standard best operating procedures for trace-explosives detectors.

Most air travelers have probably had some experience with prototype walkthrough portal or tabletop-type trace explosive detectors. Customs inspectors use the machines to check international cargo shipments, and firefighters and police officers use them to evaluate suspicious packages.

The goal of these detectors is to effectively collect residue particles that result from handling materials that might be used to fabricate a bomb and then evaluate the explosives content. For example, when operating the tabletop device, security personnel use a piece of material to swab packages and bags for explosive residues. The security officer then places the swab in a tabletop device that heats the material, separating any chemical residues that may have been absorbed.

Like other sensitive instruments, these machines need well-defined calibration standards to ensure that they are working properly. According to NIST chemist William MacCrehan, the calibration materials that the vendors of these machines provide are typically of unknown quality.

“These detectors need to be reliable and precise enough to detect particles that weigh as little as a few billionths of a gram,” says MacCrehan. “We created this SRM to provide manufacturers and operators with high quality, independently generated and validated reference test materials to enable better designs and reduce the number of false positives and negatives.”

SRM 2905 consists of four different test substances designed to simulate trace residues of C-4 plastic explosives and TNT. The substances themselves consist of inert solid particles about 20 to 30 microns in diameter. The particles have been coated with explosive materials and a florescent tag, which enables the material to be seen using specially filtered optics or glasses. Although the particles are coated with explosive material, MacCrehan says they are incapable of exploding on their own and are completely safe to handle.

This release is part of a larger, ongoing project to develop other wet and dry materials that simulate SEMTEX, gunpowder and peroxide-type explosives. According to MacCrehan, efforts also are underway to develop reference materials to help train bomb-sniffing dogs.

Mark Esser | Newswise Science News
Further information:
http://www.nist.gov

More articles from Power and Electrical Engineering:

nachricht The role of Sodium for the Enhancement of Solar Cells
17.07.2018 | Max-Planck-Institut für Eisenforschung GmbH

nachricht Behavior-influencing policies are critical for mass market success of low carbon vehicles
17.07.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>