Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST measurement advance could speed innovation in solar devices

27.07.2012
A new versatile measurement system devised by researchers at the National Institute of Standards and Technology (NIST) accurately and quickly measures the electric power output of solar energy devices, capabilities useful to researchers and manufacturers working to develop and make next-generation solar energy cells.

Innovative devices that convert sunlight to electric power more efficiently and cost effectively than the current generation of solar cell technology are the objects of a global pursuit—means to reducing fossil-fuel consumption and to securing pole position in the competition for fast-growing international markets for clean energy sources.

As reported in the journal Applied Optics,* the NIST team has combined 32 LEDs—each generating light from different segments of the solar spectrum—and other off-the-shelf equipment with their custom-made technologies to build a system that measures the wavelength-dependent quantum efficiency of solar devices over a relatively large area.

Anticipated advantages over current approaches—most of which use incandescent lamps or xenon arc and other types of discharge lamps—are greater speed and ease of operation, more uniform illumination, and a service life that is about 10 times longer.

The new NIST system for measuring spectral response easily accommodates two unique but complementary methods for determining how much electric current a solar, or photovoltaic (PV), device generates when hit by a standard amount of sunlight. Both methods are straightforward, and they use the same hardware setup.

With either method, the automated system produces measurements more rapidly than current instruments used to simulate solar radiation and characterize how efficiently a device converts light energy to electric energy.

One method, which activates the LED lights sequentially, is less subject to interference than the other technique, and yields a spectral response measurement in about 6 minutes. With the other method, all 32 LEDs are activated simultaneously, but each generates pulses of light at a different rate. The solar response of a PV device over the entire LED-blended spectrum can be determined in about 4 seconds.

Though more susceptible to interference, the faster method has potential for in-line manufacturing tests for ensuring quality, the researchers write.

The new system represents a major stride toward a technical goal set by a group of solar energy experts convened by NIST in late 2010.** "To accelerate all types of PV development and lower costs through more accurate assessment of performance," these experts set the goal to achieve spectral response measurements in fewer than 10 minutes.

While the new system beats the time requirement, the NIST team must push their technology further to match related targets that are part of the goal. Their to-do list includes matching or exceeding the energy intensity of the sun, broadening the LED-synthesized spectrum to include the infrared portion of the sun's output, and consistently achieving measurement results with uncertainties of less than 1 percent.

With their work to date, however, the NIST researchers have demonstrated that LEDs are now "technologically viable" for use in solar simulators and for characterizing PV and other photoelectric devices, says NIST physicist Behrang Hamadani.

* B. H. Hamadani, J. Roller, B. Dougherty and H. W. Yoon. Versatile Light-Emitting-Diode-based Spectral Response Measurement System for Photovoltaic Device Characterization. Applied Optics Vol. 51, No. 19, July 1, 2102.

**Foundations for Innovation: Photovoltaic Technologies for the 21st Century (Report of the Steering Committee for Advancing Solar Photovoltaic Technologies). Available at: http://events.energetics.com/NISTGrandChallenges2010/index.html

Mark Bello | EurekAlert!
Further information:
http://www.nist.gov

More articles from Power and Electrical Engineering:

nachricht Scientists create biodegradable, paper-based biobatteries
08.08.2018 | Binghamton University

nachricht Ricocheting radio waves monitor the tiniest movements in a room
07.08.2018 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>