Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New techniques allow greater control of smartwatches

30.01.2017

Technology controlled by breaths, swipes and ta

Smartwatches aren't the easiest things to control, with their small screens and owner't bulky fingers. Georgia Institute of Technology researchers have invented new ways to interact that provide a little more control. Among their enhancements using LG and Sony watches:


A 3-D-printed flutecase snaps onto a watch to support Whoosh. The attachment has eight holes around the bezel, each with varying lengths. When a wearer blows into each of the holes, unique frequencies are generated much like a flute.

Credit: Gabriel Reyes

  • Scrolling through apps running your fingers along the watch band

     

  • Launching eight smartwatch apps by tapping key points on the watch case (or bezel)

     

  • Rejecting phone calls by blowing on the screen or tapping the side of the watch

     

  • Editing dictated text message errors by breathing on the screen

     

  • Transferring on-screen information from the watch to a phone with breaths

     

  • Selecting numbers by tapping the back of your hand

The research was presented at several conferences in the fall, most recently in Niagara Falls at the 2016 ACM International Conference on Interactive Surfaces and Spaces in November.

... more about:
»Smartwatches »frequencies »watch

Ph.D. student Cheng Zhang oversaw WatchOut, an interaction technique that uses taps and scrolling gestures on the case and watchband. They're possible because of the watch's gyroscope and accelerometer sensors.

"Other techniques that improve control of smartwatches have included 3D gestures above the screen, bigger screens or adding an extra armband," Zhang said. "We wanted to show it could be done with existing technology already common on today's devices."

One demo app allows wearers to scroll up, down, left and right by swiping on the watchband. According to Zhang it makes it easier to interact with GPS maps or menus. His study showed that scrolling on rubber watchbands was more accurate than leather bands due to the different friction of the materials.

They also created an app that creates eight touchpoints on the device's bezel. Rather than scrolling through a long list of apps, the user simply hits one of eight spots on the case to launch Facebook, for example. Hitting the sides of the watch can also control incoming calls.

"Smartwatches aren't very convenient when you're carrying something," Zhang said. "That's why we wanted to create a technique that allows the user to tap the watch to accept or deny phone calls. Hitting the right side answers the call; the left side ignores it."

Hands-free control is exactly what the other Georgia Tech team, led by Ph.D. student Gabriel Reyes, had in mind. One day he watched his wife blow a piece of fuzz off her phone while holding their newborn son. He and a team of students later created Whoosh, a technique that allows a person to control the watch by blowing, exhaling, shushing, sipping or puffing on the screen. The watch uses its microphone and machine learning to identify the breath patterns of each acoustic event, then assigns an action to each.

For example, a wearer can shush the watch to ignore a call or blow on it twice to accept. In another scenario, the watch can be locked or unlocked using a correct combination of short or long breaths. Voice recognition sometimes produces incorrect words when dictating a text message. Blowing quickly on the watch can erase words, while blowing on it longer will send the text message when ready. Finally, the technique also works with smartphones. A user can transfer content from the watch to a smartphone simply by sipping it off the watch and puffing it on the phone.

Reyes and his team are excited that they've proven the technology works. He says it could have potential for people with disabilities.

"The sip and puff technique has been used to control wheelchairs," he said. "Perhaps Whoosh could be the foundation for developers looking for ways that allow more control for those who can't easily interact with their mobile and wearable devices."

Dingtian Zhang, a Ph.D. student and labmate of Reyes, also designed a 3D-printed case that snaps onto the watch. The attachment has eight holes around the bezel, each with varying lengths. When a wearer blows into each of the holes, unique frequencies are generated much like a flute. The watch's microphone and the Whoosh system detects the subtle differences in the frequencies produced and identifies the intended target. Each target is linked to a specific action within applications.

The final project, TapSkin, allows users to tap on the back of their hand to input numbers 0-9 or commands into the watch. The technique uses the watch's microphone and inertial sensors to detect a total of 11 different tapping locations on a person's skin around the watch.

Media Contact

Jason Maderer
maderer@gatech.edu
404-660-2926

 @GeorgiaTech

http://www.gatech.edu 

Jason Maderer | EurekAlert!

Further reports about: Smartwatches frequencies watch

More articles from Power and Electrical Engineering:

nachricht A paper battery powered by bacteria
21.08.2018 | American Chemical Society

nachricht Converting wind power for storage purposes
21.08.2018 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

Protein interaction helps Yersinia cause disease

21.08.2018 | Life Sciences

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>